1,520 research outputs found

    Cosmological evolution of warm dark matter fluctuations II: Solution from small to large scales and keV sterile neutrinos

    Full text link
    We solve the cosmological evolution of warm dark matter (WDM) density fluctuations with the Volterra integral equations of paper I. In the absence of neutrinos, the anisotropic stress vanishes and the Volterra equations reduce to a single integral equation. We solve numerically this equation both for DM fermions decoupling at equilibrium and DM sterile neutrinos decoupling out of equilibrium. We give the exact analytic solution for the density fluctuations and gravitational potential at zero wavenumber. We compute the density contrast as a function of the scale factor a for a wide range of wavenumbers k. At fixed a, the density contrast grows with k for k k_c, (k_c ~ 1.6/Mpc). The density contrast depends on k and a mainly through the product k a exhibiting a self-similar behavior. Our numerical density contrast for small k gently approaches our analytic solution for k = 0. For fixed k < 1/(60 kpc), the density contrast generically grows with a while for k > 1/(60 kpc) it exhibits oscillations since the RD era which become stronger as k grows. We compute the transfer function of the density contrast for thermal fermions and for sterile neutrinos in: a) the Dodelson-Widrow (DW) model and b) in a model with sterile neutrinos produced by a scalar particle decay. The transfer function grows with k for small k and then decreases after reaching a maximum at k = k_c reflecting the time evolution of the density contrast. The integral kernels in the Volterra equations are nonlocal in time and their falloff determine the memory of the past evolution since decoupling. This falloff is faster when DM decouples at equilibrium than when it decouples out of equilibrium. Although neutrinos and photons can be neglected in the MD era, they contribute in the MD era through their memory from the RD era.Comment: 27 pages, 6 figures. To appear in Phys Rev

    On the difference between proton and neutron spin-orbit splittings in nuclei

    Get PDF
    The latest experimental data on nuclei at 132^{132}Sn permit us for the first time to determine the spin-orbit splittings of neutrons and protons in identical orbits in this neutron-rich doubly-magic region and compare the case to that of 208^{208}Pb. Using the new results, which are now consistent for the two neutron-rich doubly magic regions, a theoretical analysis defines the isotopic dependence of the mean field spin-orbit potential and leads to a simple explicit expression for the difference between the spin-orbit splittings of neutrons and protons. The isotopic dependence is explained in the framework of different theoretical approaches.Comment: 8 pages, revte

    String propagation in four-dimensional dyonic black hole background

    Get PDF
    We study string propagation in an exact, four-dimensional dyonic black hole background. The general solutions describing string configurations are obtained by solving the string equations of motion and constraints. By using the covariant formalism, we also investigate the propagation of physical perturbations along the string in the given curved background.Comment: 19 pages, Tex (macro phyzzx is needed

    On the isospin dependence of the mean spin-orbit field in nuclei

    Get PDF
    By the use of the latest experimental data on the spectra of 133^{133}Sb and 131^{131}Sn and on the analysis of properties of other odd nuclei adjacent to doubly magic closed shells the isospin dependence of a mean spin-orbit potential is defined. Such a dependence received the explanation in the framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure

    Association between sleep-disordered breathing and breast cancer aggressiveness

    Get PDF
    Background Sleep-disordered breathing (SDB) has been associated with cancer aggressiveness, but studies focused on specific tumors are lacking. In this pilot study we investigated whether SDB is associated with breast cancer (BC) aggressiveness. Methods 83 consecutive women <65 years diagnosed with primary BC underwent a home respiratory polygraphy. Markers of SDB severity included the apnea-hypopnea index (AHI) and the 4% oxygen desaturation index (ODI4). The Ki67 proliferation index, lack of hormone receptors (HR-), Nottingham Histological Grade (NHG), and tumor stage were used as markers of BC aggressiveness. The association between SDB and molecular subtypes of BC was also assessed. Results The mean (SD) age was 48.8 (8.8) years and body mass index was 27.4 (5.4) Kg/m2. 42 women (50.6%) were post-menopausal. The median (IQR) AHI was 5.1 (2–9.4), and ODI4 was 1.5 (0.5–5.8). The median (IQR) AHI did not differ between the groups with Ki67>28% and Ki6728% and Ki67<29% (51.2% vs 52.3%, p = 0.90), HR- and HR+ (58.3% vs 49.1%, p = 0.47), NHG categories (p = 0.89), different tumor stages (p = 0.71), or molecular subtypes (p = 0.73). These results did not change when the ODI4 was used instead of the AHI. Conclusion Our results do not support an association between the presence or severity of SDB and BC aggressiveness.Asociación de Neumología y Cirugía Torácica del Sur (NEUMOSUR) 1/201

    Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies

    Full text link
    We obtain the effective inflaton potential during slow roll inflation by including the one loop quantum corrections to the energy momentum tensor from scalar curvature and tensor perturbations as well as quantum fluctuations from light scalars and light Dirac fermions generically coupled to the inflaton. During slow roll inflation there is a clean and unambiguous separation between superhorizon and subhorizon contributions to the energy momentum tensor. The superhorizon part is determined by the curvature perturbations and scalar field fluctuations: both feature infrared enhancements as the inverse of a combination of slow roll parameters which measure the departure from scale invariance in each case.Fermions and gravitons do not exhibit infrared divergences. The subhorizon part is completely specified by the trace anomaly of the fields with different spins and is solely determined by the space-time geometry. The one-loop quantum corrections to the amplitude of curvature and tensor perturbations are obtained to leading order in slow-roll and in the (H/M_PL)^2 expansion. This study provides a complete assessment of the backreaction problem up to one loop including bosonic and fermionic degrees of freedom. The result validates the effective field theory description of inflation and confirms the robustness of the inflationary paradigm to quantum fluctuations. Quantum corrections to the power spectra are expressed in terms of the CMB observables:n_s, r and dn_s/dln k. Trace anomalies (especially the graviton part) dominate these quantum corrections in a definite direction: they enhance the scalar curvature fluctuations and reduce the tensor fluctuations.Comment: 18 pages, no figure

    Inflation and nonequilibrium renormalization group

    Get PDF
    We study de spectrum of primordial fluctuations and the scale dependence of the inflaton spectral index due to self-interactions of the field. We compute the spectrum of fluctuations by applying nonequilibrium renormalization group techniques.Comment: 6 pages, 1 figure, submitted to J. Phys.

    Strings Near a Rindler Or Black Hole Horizon

    Get PDF
    Orbifold techniques are used to study bosonic, type II and heterotic strings in Rindler space at integer multiples N of the Rindler temperature, and near a black hole horizon at integer multiples of the Hawking temperature, extending earlier results of Dabholkar. It is argued that a Hagedorn transition occurs nears the horizon for all N>1.Comment: 13 pages, harvmac, (references added

    Plane waves with weak singularities

    Get PDF
    We study a class of time dependent solutions of the vacuum Einstein equations which are plane waves with weak null singularities. This singularity is weak in the sense that though the tidal forces diverge at the singularity, the rate of divergence is such that the distortion suffered by a freely falling observer remains finite. Among such weak singular plane waves there is a sub-class which do not exhibit large back reaction in the presence of test scalar probes. String propagation in these backgrounds is smooth and there is a natural way to continue the metric beyond the singularity. This continued metric admits string propagation without the string becoming infinitely excited. We construct a one parameter family of smooth metrics which are at a finite distance in the space of metrics from the extended metric and a well defined operator in the string sigma model which resolves the singularity.Comment: 22 pages, Added references and clarifying comment

    CMB quadrupole suppression: II. The early fast roll stage

    Get PDF
    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established.Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of efolds N_{tot} ~ 59, there is a 10-20% suppression of the CMB quadrupole and about 2-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l^2. The suppression is much smaller for N_{tot} > 59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N_{tot} ~ 59.Comment: Some comments and references adde
    corecore