24 research outputs found

    Decadal Evolution of Ocean Thermal Anomalies in the North Atlantic: The Effects of Ekman, Overturning, and Horizontal Transport

    Get PDF
    Basin-scale thermal anomalies in the North Atlantic, extending to depths of 1–2 km, are more pronounced than the background warming over the last 60 years. A dynamical analysis based on reanalyses of historical data from 1965 to 2000 suggests that these thermal anomalies are formed by ocean heat convergences, augmented by the poorly known air–sea fluxes. The heat convergence is separated into contributions from the horizontal circulation and the meridional overturning circulation (MOC), the latter further separated into Ekman and MOC transport minus Ekman transport (MOC-Ekman) cells. The subtropical thermal anomalies are mainly controlled by wind-induced changes in the Ekman heat convergence, while the subpolar thermal anomalies are controlled by the MOC-Ekman heat convergence; the horizontal heat convergence is generally weaker, only becoming significant within the subpolar gyre. These thermal anomalies often have an opposing sign between the subtropical and subpolar gyres, associated with opposing changes in the meridional volume transport driving the Ekman and MOC-Ekman heat convergences. These changes in gyre-scale convergences in heat transport are probably induced by the winds, as they correlate with the zonal wind stress at gyre boundaries

    Sensitivity of global warming to carbon emissions: effects of heat and carbon uptake in a suite of Earth system models

    Get PDF
    Climate projections reveal global-mean surface warming increasing nearly linearly with cumulative carbon emissions. The sensitivity of surface warming to carbon emissions is interpreted in terms of a product of three terms: the dependence of surface warming on radiative forcing, the fractional radiative forcing from CO2, and the dependence of radiative forcing from CO2 on carbon emissions. Mechanistically each term varies, respectively, with climate sensitivity and ocean heat uptake, radiative forcing contributions, and ocean and terrestrial carbon uptake. The sensitivity of surface warming to fossil-fuel carbon emissions is examined using an ensemble of Earth system models, forced either by an annual increase in atmospheric CO2 or by RCPs until year 2100. The sensitivity of surface warming to carbon emissions is controlled by a temporal decrease in the dependence of radiative forcing from CO2 on carbon emissions, which is partly offset by a temporal increase in the dependence of surface warming on radiative forcing. The decrease in the dependence of radiative forcing from CO2 is due to a decline in the ratio of the global ocean carbon undersaturation to carbon emissions, while the increase in the dependence of surface warming is due to a decline in the ratio of ocean heat uptake to radiative forcing. At the present time, there are large intermodel differences in the sensitivity in surface warming to carbon emissions, which are mainly due to uncertainties in the climate sensitivity and ocean heat uptake. These uncertainties undermine the ability to predict how much carbon may be emitted before reaching a warming target

    Variations in the Difference between Mean Sea Level measured either side of Cape Hatteras and Their Relation to the North Atlantic Oscillation

    Get PDF
    We consider the extent to which the difference in mean sea level (MSL) measured on the North American Atlantic coast either side of Cape Hatteras varies as a consequence of dynamical changes in the ocean caused by fluctuations in the North Atlantic Oscillation (NAO). From analysis of tide gauge data, we know that changes in MSL-difference and NAO index are correlated on decadal to century timescales enabling a scale factor of MSL-difference change per unit change in NAO index to be estimated. Changes in trend in the NAO index have been small during the past few centuries (when measured using windows of order 60–120 years). Therefore, if the same scale factor applies through this period of time, the corresponding changes in trend in MSL-difference for the past few centuries should also have been small. It is suggested thereby that the sea level records for recent centuries obtained from salt marshes (adjusted for long-term vertical land movements) should have essentially the same NAO-driven trends south and north of Cape Hatteras, only differing due to contributions from other processes such as changes in the Meridional Overturning Circulation or ‘geophysical fingerprints’. The salt marsh data evidently support this interpretation within their uncertainties for the past few centuries, and perhaps even for the past millennium. Recommendations are made on how greater insight might be obtained by acquiring more measurements and by improved modelling of the sea level response to wind along the shelf

    Drivers of continued surface warming after cessation of carbon emissions

    No full text
    The climate response after cessation of carbon emissions is examined here, exploiting a single equation connecting surface warming to cumulative carbon emissions. The multi-centennial response to an idealized pulse of carbon is considered by diagnosing a 1000 year integration of an Earth system model (GFDL ESM2M) and an ensemble of efficient Earth system model simulations. After emissions cease, surface temperature evolves according to (i) how much of the emitted carbon remains in the atmosphere and (ii) how much of the additional radiative forcing warms the surface rather than the ocean interior. The peak in surface temperature is delayed in time after carbon emissions cease through the decline in ocean heat uptake, which in turn increases the proportion of radiative forcing warming the surface. Eventually, after many centuries, surface temperature declines as the radiative forcing decreases through the excess atmospheric CO2 being taken up by the ocean and land

    Numerical simulation of the interannual variability of the Mediterranean Sea upper ocean circulation

    No full text
    Numerical simulations reveal that variations in wind stress arid heat fluxes can induce significant interannual fluctuations in the circulation of the upper layers of the Mediterranean. From January 1980 to November 1988, the atmosphere shows changes in the structure and magnitude of the surface winds and in the air temperatures which induce modifications in the upper ocean structure and currents. The model prediction of the interannual fluctuations of the Sicily Strait baroclinic westward volume transport is in agreement with observations and the variability is explained as a function of the wind curl forcing in the region. The current anomalies persist for many months after a Winter atmospheric anomalous disturbance has occurred over the basin. The Eastern Mediterranean basin is the area where the interannual ocean response is most pronounced

    Meridional coherence of the North Atlantic meridional overturning circulation

    No full text
    The North Atlantic Meridional Overturning Circulation (MOC) is associated with deep water formation at high latitudes, and climatically-important ocean-atmosphere heat fluxes, hence the current substantial effort to monitor the MOC. While it is expected that, on sufficiently long time scales, variations in the MOC would be coherent across latitudes south of the deep water formation region, it is not clear whether coherence should be expected at shorter timescales. In this paper, we investigate the coherence of MOC variations in a range of ocean models. We find that, across a range of model physics, resolution, and forcing scenarios, there is a change in the character of the overturning north and south of about 40 degrees N. To the north the variability has a strong decadal component, while to the south higher frequencies dominate. This acts to significantly reduce the meridional coherence of the MOC, even on interannual timescales. A physical interpretation in terms of an underlying meridionally coherent mode, strongest at high latitudes, but swamped by higher frequency, more localised processes south of 40 degrees N is provided. Citation: Bingham, R. J., C. W. Hughes, V. Roussenov, and R. G. Williams ( 2007), Meridional coherence of the North Atlantic meridional overturning circulatio

    Distribution of dissolved organic nutrients and their effect on export production over the Atlantic Ocean

    Get PDF
    A synthesis is provided of dissolved organic nitrogen (DON) and phosphorus (DOP) distributions over the Atlantic Ocean based upon field data from eight recent transects, six meridional between 50°N and 50°S and two zonal at 24° and 36°N. Over the entire tropical and subtropical Atlantic, DON and DOP provide the dominant contributions to total nitrogen and phosphorus pools for surface waters above the thermocline. Elevated DON and DOP concentrations (&gt;5 and &gt;0.2 ?mol L?1, respectively) occur in surface waters on the eastern side of the North Atlantic subtropical gyre and equatorial sides of both the North and South Atlantic subtropical gyres, while particularly low concentrations of DOP (&lt;0.05 ?mol L?1) occur over the northern flank of the North Atlantic subtropical gyre along 36°N. This distribution is consistent with organic nutrients formed at the gyre margins supporting carbon export as they are redistributed via the gyre circulation. The effect of DON and DOP transport and cycling on export production is examined in an eddy-permitting, coupled physical and nutrient model integrated for 40 years: organic nutrients are produced in the upwelling zones off North Africa and transferred laterally into the gyre interior, facilitated in part by the mesoscale eddy circulation, as well as fluxed northward from the tropics as part of the overturning circulation. Inputs of semilabile DON and DOP to the tropical and subtropical Atlantic Ocean play an important role in sustaining up to typically 40 and 70% of the modeled particulate N and P export, particularly on the eastern and equatorward sides of the subtropical gyres.<br/
    corecore