18 research outputs found

    Novel functions and regulation of cryptic cellobiose operons in Escherichia coli

    Get PDF
    Presence of cellobiose as a sole carbon source induces mutations in the chb and asc operons of Escherichia coli and allows it to grow on cellobiose. We previously engineered these two operons with synthetic constitutive promoters and achieved efficient cellobiose metabolism through adaptive evolution. In this study, we characterized two mutations observed in the efficient cellobiose metabolizing strain: duplication of RBS of ascB gene, (beta-glucosidase of asc operon) and nonsense mutation in yebK, (an uncharacterized transcription factor). Mutations in yebK play a dominant role by modulating the length of lag phase, relative to the growth rate of the strain when transferred from a rich medium to minimal cellobiose medium. Mutations in ascB, on the other hand, are specific for cellobiose and help in enhancing the specific growth rate. Taken together, our results show that ascB of the asc operon is controlled by an internal putative promoter in addition to the native cryptic promoter, and the transcription factor yebK helps to remodel the host physiology for cellobiose metabolism. While previous studies characterized the stress-induced mutations that allowed growth on cellobiose, here, we characterize the adaptation-induced mutations that help in enhancing cellobiose metabolic ability. This study will shed new light on the regulatory changes and factors that are needed for the functional coupling of the host physiology to the activated cryptic cellobiose metabolismopen1

    A Simple and Effective Method for Construction of Escherichia coli Strains Proficient for Genome Engineering

    Get PDF
    Multiplex genome engineering is a standalone recombineering tool for large-scale programming and accelerated evolution of cells. However, this advanced genome engineering technique has been limited to use in selected bacterial strains. We developed a simple and effective strain-independent method for effective genome engineering in Escherichia coli. The method involves introducing a suicide plasmid carrying the l Red recombination system into the mutS gene. The suicide plasmid can be excised from the chromosome via selection in the absence of antibiotics, thus allowing transient inactivation of the mismatch repair system during genome engineering. In addition, we developed another suicide plasmid that enables integration of large DNA fragments into the lacZ genomic locus. These features enable this system to be applied in the exploitation of the benefits of genome engineering in synthetic biology, as well as the metabolic engineering of different strains of E. coli.open7

    Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment

    Get PDF
    Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process

    Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels

    No full text
    International audienceRecently, several endophytic fungi have been demonstrated to produce volatile organic compounds (VOCs) with properties similar to fossil fuels, called "mycodiesel," while growing on lignocellulosic plant and agricultural residues. The fact that endophytes are plant symbionts suggests that some may be able to produce lignocellulolytic enzymes, making them capable of both deconstructing lignocellulose and converting it into mycodiesel, two properties that indicate that these strains may be useful consolidated bioprocessing (CBP) hosts for the biofuel production. In this study, four endophytes Hypoxylon sp. CI4A, Hypoxylon sp. EC38, Hypoxylon sp. CO27, and Daldinia eschscholzii EC12 were selected and evaluated for their CBP potential. Analysis of their genomes indicates that these endophytes have a rich reservoir of biomass-deconstructing carbohydrate-active enzymes (CAZys), which includes enzymes active on both polysaccharides and lignin, as well as terpene synthases (TPSs), enzymes that may produce fuel-like molecules, suggesting that they do indeed have CBP potential. GC-MS analyses of their VOCs when grown on four representative lignocellulosic feedstocks revealed that these endophytes produce a wide spectrum of hydrocarbons, the majority of which are monoterpenes and sesquiterpenes, including some known biofuel candidates. Analysis of their cellulase activity when grown under the same conditions revealed that these endophytes actively produce endoglucanases, exoglucanases, and β-glucosidases. The richness of CAZymes as well as terpene synthases identified in these four endophytic fungi suggests that they are great candidates to pursue for development into platform CBP organisms
    corecore