1,770 research outputs found
Processing 3D form and 3D motion: Respective contributions of attention-based and stimulus-driven activity
International audienceThis study aims at segregating the neural substrate for the 3D-form and 3D-motion attributes in structure-from-motion perception, and at disentangling the stimulus-driven and endogenous-attention-driven processing of these attributes. Attention and stimulus were manipulated independently: participants had to detect the transitions of one attribute –form, 3D motion or colour– while the visual stimulus underwent successive transitions of all attributes. We compared the BOLD activity related to form and 3D motion in three conditions: stimulus-driven processing (unattended transitions), endogenous attentional selection (task) or both stimulus-driven processing and attentional selection (attended transitions). In all conditions, the form versus 3D-motion contrasts revealed a clear dorsal/ventral segregation. However, while the form-related activity is consistent with previously described shape-selective areas, the activity related to 3D motion does not encompass the usual “visual motion” areas, but rather corresponds to a high-level motion system, including IPL and STS areas. Second, we found a dissociation between the neural processing of unattended attributes and that involved in endogenous attentional selection. Areas selective for 3D-motion and form showed either increased activity at transitions of these respective attributes or decreased activity when subjects’ attention was directed to a competing attribute. We propose that both facilitatory and suppressive mechanisms of attribute selection are involved depending on the conditions driving this selection. Therefore, attentional selection is not limited to an increased activity in areas processing stimulus properties, and may unveil different functional localization from stimulus modulation
Modeling and predicting the shape of the far-infrared to submillimeter emission in ultra-compact HII regions and cold clumps
Dust properties are very likely affected by the environment in which dust
grains evolve. For instance, some analyses of cold clumps (7 K- 17 K) indicate
that the aggregation process is favored in dense environments. However,
studying warm (30 K-40 K) dust emission at long wavelength (300
m) has been limited because it is difficult to combine far
infared-to-millimeter (FIR-to-mm) spectral coverage and high angular resolution
for observations of warm dust grains. Using Herschel data from 70 to 500
m, which are part of the Herschel infrared Galactic (Hi-GAL) survey
combined with 1.1 mm data from the Bolocam Galactic Plane Survey (BGPS), we
compared emission in two types of environments: ultra-compact HII (UCHII)
regions, and cold molecular clumps (denoted as cold clumps). With this
comparison we tested dust emission models in the FIR-to-mm domain that
reproduce emission in the diffuse medium, in these two environments (UCHII
regions and cold clumps). We also investigated their ability to predict the
dust emission in our Galaxy. We determined the emission spectra in twelve UCHII
regions and twelve cold clumps, and derived the dust temperature (T) using the
recent two-level system (TLS) model with three sets of parameters and the
so-called T- (temperature-dust emissvity index) phenomenological models,
with set to 1.5, 2 and 2.5. We tested the applicability of the TLS
model in warm regions for the first time. This analysis indicates distinct
trends in the dust emission between cold and warm environments that are visible
through changes in the dust emissivity index. However, with the use of standard
parameters, the TLS model is able to reproduce the spectral behavior observed
in cold and warm regions, from the change of the dust temperature alone,
whereas a T- model requires to be known.Comment: Accepted for publication in A&A. 19 pages, 8 figures, 7 table
Far-Infrared to Millimeter Astrophysical Dust Emission. II: Comparison of the Two-Level Systems (TLS) model with Astronomical Data
In a previous paper we proposed a new model for the emission by amorphous
astronomical dust grains, based on solid-state physics. The model uses a
description of the Disordered Charge Distribution (DCD) combined with the
presence of Two-Level Systems (TLS) defects in the amorphous solid composing
the grains. The goal of this paper is to confront this new model to
astronomical observations of different Galactic environments in the FIR/submm,
in order to derive a set of canonical model parameters to be used as a Galactic
reference to be compared to in future Galactic and extragalactic studies. We
confront the TLS model with existing astronomical data. We consider the average
emission spectrum at high latitudes in our Galaxy as measured with FIRAS and
WMAP, as well as the emission from Galactic compact sources observed with
Archeops, for which an inverse relationship between the dust temperature and
the emissivity spectral index has been evidenced. We show that, unlike models
previously proposed which often invoke two dust components at different
temperatures, the TLS model successfully reproduces both the shape of the
Galactic SED and its evolution with temperature as observed in the Archeops
data. The best TLS model parameters indicate a charge coherence length of
\simeq 13 nm and other model parameters in broad agreement with expectations
from laboratory studies of dust analogs. We conclude that the millimeter excess
emission, which is often attributed to the presence of very cold dust in the
diffuse ISM, is likely caused solely by TLS emission in disordered amorphous
dust grains. We discuss the implications of the new model, in terms of mass
determinations from millimeter continuum observations and the expected
variations of the emissivity spectral index with wavelength and dust
temperature. The implications for the analysis of the Herschel and Planck
satellite data are discussed.Comment: Accepted for publication in A&A (16 pages, 9 figures, 6 tables
Assessment of Utilization of Food Variety on the International Space Station
Long duration missions will require astronauts to subsist on a closed food system for at least three years. Resupply will not be an option, and the food supply will be older at the time of consumption and more static in variety than previous missions. The space food variety requirements that will both supply nutrition and support continued interest in adequate consumption for a mission of this duration is unknown. Limited food variety of past space programs (Gemini, Apollo, International Space Station) as well as in military operations resulted in monotony, food aversion, and weight loss despite relatively short mission durations of a few days up to several months. In this study, food consumption data from 10 crew members on 3-6-month International Space Station missions was assessed to determine what percentage of the existing food variety was used by crew members, if the food choices correlated to the amount of time in orbit, and whether commonalities in food selections existed across crew members. Complete mission diet logs were recorded on ISS flights from 2008 - 2014, a period in which space food menu variety was consistent, but the food system underwent an extensive reformulation to reduce sodium content. Food consumption data was correlated to the Food on Orbit by Week logs, archived Data Usage Charts, and a food list categorization table using TRIFACTA software and queries in a SQL SERVER 2012 database
Improving blood pressure control through pharmacist interventions: a meta-analysis of randomized controlled trials.
BACKGROUND: Control of blood pressure (BP) remains a major challenge in primary care. Innovative interventions to improve BP control are therefore needed. By updating and combining data from 2 previous systematic reviews, we assess the effect of pharmacist interventions on BP and identify potential determinants of heterogeneity.
METHODS AND RESULTS: Randomized controlled trials (RCTs) assessing the effect of pharmacist interventions on BP among outpatients with or without diabetes were identified from MEDLINE, EMBASE, CINAHL, and CENTRAL databases. Weighted mean differences in BP were estimated using random effect models. Prediction intervals (PI) were computed to better express uncertainties in the effect estimates. Thirty-nine RCTs were included with 14 224 patients. Pharmacist interventions mainly included patient education, feedback to physician, and medication management. Compared with usual care, pharmacist interventions showed greater reduction in systolic BP (-7.6 mm Hg, 95% CI: -9.0 to -6.3; I(2)=67%) and diastolic BP (-3.9 mm Hg, 95% CI: -5.1 to -2.8; I(2)=83%). The 95% PI ranged from -13.9 to -1.4 mm Hg for systolic BP and from -9.9 to +2.0 mm Hg for diastolic BP. The effect tended to be larger if the intervention was led by the pharmacist and was done at least monthly.
CONCLUSIONS: Pharmacist interventions - alone or in collaboration with other healthcare professionals - improved BP management. Nevertheless, pharmacist interventions had differential effects on BP, from very large to modest or no effect; and determinants of heterogeneity could not be identified. Determining the most efficient, cost-effective, and least time-consuming intervention should be addressed with further research
Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids
Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bena, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Godoy Bürki, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentin
Incorporating prior knowledge improves detection of differences in bacterial growth rate
BACKGROUND: Robust statistical detection of differences in the bacterial growth rate can be challenging, particularly when dealing with small differences or noisy data. The Bayesian approach provides a consistent framework for inferring model parameters and comparing hypotheses. The method captures the full uncertainty of parameter values, whilst making effective use of prior knowledge about a given system to improve estimation. RESULTS: We demonstrated the application of Bayesian analysis to bacterial growth curve comparison. Following extensive testing of the method, the analysis was applied to the large dataset of bacterial responses which are freely available at the web-resource, ComBase. Detection was found to be improved by using prior knowledge from clusters of previously analysed experimental results at similar environmental conditions. A comparison was also made to a more traditional statistical testing method, the F-test, and Bayesian analysis was found to perform more conclusively and to be capable of attributing significance to more subtle differences in growth rate. CONCLUSIONS: We have demonstrated that by making use of existing experimental knowledge, it is possible to significantly improve detection of differences in bacterial growth rate
Galactic cold cores. VI. Dust opacity spectral index
Context. The Galactic Cold Cores project has carried out Herschel photometric observations of 116 fields where the Planck survey has found signs of cold dust emission. The fields contain sources in different environments and different phases of star formation. Previous studies have revealed variations in their dust submillimetre opacity.
Aims. The aim is to measure the value of dust opacity spectral index and to understand its variations spatially and with respect to other parameters, such as temperature, column density, and Galactic location.
Methods. The dust opacity spectral index β and the dust colour temperature T are derived using Herschel and Planck data. The relation between β and T is examined for the whole sample and inside individual fields.
Results. Based on IRAS and Planck data, the fields are characterised by a median colour temperature of 16.1 K and a median opacity spectral index of β = 1.84. The values are not correlated with Galactic longitude. We observe a clear T–β anti-correlation. In Herschel observations, constrained at lower resolution by Planck data, the variations follow the column density structure and β_(FIR) can rise to ~2.2 in individual clumps. The highest values are found in starless clumps. The Planck 217 GHz band shows a systematic excess that is not restricted to cold clumps and is thus consistent with a general flattening of the dust emission spectrum at millimetre wavelengths. When fitted separately below and above 700 μm, the median spectral index values are β_(FIR) ~ 1.91 and β(mm) ~ 1.66.
Conclusions. The spectral index changes as a function of column density and wavelength. The comparison of different data sets and the examination of possible error sources show that our results are robust. However, β variations are partly masked by temperature gradients and the changes in the intrinsic grain properties may be even greater
- …
