18,233 research outputs found

    Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Get PDF
    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large resistivity of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.Comment: 14 pages, 6 figures. Accepted in 2D Materials. https://doi.org/10.1088/2053-1583/aa882

    Search for Associations Containing Young stars (SACY): Chemical tagging IC 2391 & the Argus association

    Full text link
    We explore the possible connection between the open cluster IC 2391 and the unbound Argus association identified by the SACY survey. In addition to common kinematics and ages between these two systems, here we explore their chemical abundance patterns to confirm if the two substructures shared a common origin. We carry out a homogenous high-resolution elemental abundance study of eight confirmed members of IC 2391 as well as six members of the Argus association using UVES spectra. We derive spectroscopic stellar parameters and abundances for Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni and Ba. All stars in the open cluster and Argus association were found to share similar abundances with the scatter well within the uncertainties, where [Fe/H] = -0.04 +/-0.03 for cluster stars and [Fe/H] = -0.06 +/-0.05 for Argus stars. Effects of over-ionisation/excitation were seen for stars cooler than roughly 5200K as previously noted in the literature. Also, enhanced Ba abundances of around 0.6 dex were observed in both systems. The common ages, kinematics and chemical abundances strongly support that the Argus association stars originated from the open cluster IC 2391. Simple modeling of this system find this dissolution to be consistent with two-body interactions.Comment: 17 pages, 7 figs, accepted for publication in MNRA

    Successful organizational learning in the management of agricultural research and innovation: The Mexican produce foundations

    Get PDF
    "Since the 1980s, developing countries' agriculture has become more complex and diversified. In general, the public research and extension institutions in these countries were criticized for not participating in the emergence of the most dynamic agricultural markets. In recent years, many of these institutions have struggled to adapt to the new environment but they could not overcome the hurdles posed by organizational rigidities, strict public regulations, deteriorating human capital, shrinking budgets and a model of science that hampered their integration into dynamic innovation processes. In general, developing countries applied similar agricultural research policies: separation of financing and implementation of research, reductions in direct budgetary allocations to research and extension institutions, elimination or major reduction of public extension, and introduction of competitive grants programs to induce a transformation of research organizations. Strong anecdotal information suggests that these policies had limited impact on the quality and pertinence of research, and on the performance of the public research institutions. Using a different set of instruments, the Mexican Produce Foundations (PF) had major and diverse impacts on the agricultural innovation and research systems. These impacts resulted mostly from activities the PF introduced as they learned to manage funds for research and extension, and to a lesser extent from the activities they were created for, i.e., manage a competitive fund for agricultural research and extension. The PF were able to introduce these activities because they developed strong abilities to learn, including identifying knowledge gaps and defining strategies to fill them. The questions this report seeks to answer are how an organization that manages public funds for research and extension could sustain organizational innovations over extended periods, and how it could learn and adapt to maximize its impact on the agricultural innovation system. Previous studies found that human resources, organizational cultures and governance structures are three of the most important factors influencing institutional change and innovative capabilities. Despite their importance, these factors have been largely neglected in the literature on agricultural research and extension policies. This document analyzes what role these factors played in the Mexican experience." from textAgricultural research, Agricultural innovation, Developing countries,

    Coupled-channels effects in elastic scattering and near-barrier fusion induced by weakly bound nuclei and exotic halo nuclei

    Get PDF
    The influence on fusion of coupling to the breakup process is investigated for reactions where at least one of the colliding nuclei has a sufficiently low binding energy for breakup to become an important process. Elastic scattering, excitation functions for sub-and near-barrier fusion cross sections, and breakup yields are analyzed for 6,7^{6,7}Li+59^{59}Co. Continuum-Discretized Coupled-Channels (CDCC) calculations describe well the data at and above the barrier. Elastic scattering with 6^{6}Li (as compared to 7^{7}Li) indicates the significant role of breakup for weakly bound projectiles. A study of 4,6^{4,6}He induced fusion reactions with a three-body CDCC method for the 6^6He halo nucleus is presented. The relative importance of breakup and bound-state structure effects on total fusion is discussed.Comment: 29 pages, 9 figure

    Functional Optimization in Complex Excitable Networks

    Full text link
    We study the effect of varying wiring in excitable random networks in which connection weights change with activity to mold local resistance or facilitation due to fatigue. Dynamic attractors, corresponding to patterns of activity, are then easily destabilized according to three main modes, including one in which the activity shows chaotic hopping among the patterns. We describe phase transitions to this regime, and show a monotonous dependence of critical parameters on the heterogeneity of the wiring distribution. Such correlation between topology and functionality implies, in particular, that tasks which require unstable behavior --such as pattern recognition, family discrimination and categorization-- can be most efficiently performed on highly heterogeneous networks. It also follows a possible explanation for the abundance in nature of scale--free network topologies.Comment: 7 pages, 3 figure

    Spin-Torque-Induced Rotational Dynamics of a Magnetic Vortex Dipole

    Full text link
    We study, both experimentally and by numerical modeling, the magnetic dynamics that can be excited in a magnetic thin-film nanopillar device using the spin torque from a spatially localized current injected via a 10s-of-nm-diameter aperture. The current-driven magnetic dynamics can produce large amplitude microwave emission at zero magnetic field, with a frequency well below that of the uniform ferromagnetic resonance mode. Micromagnetic simulations indicate that the physical origin of this efficient microwave nano-oscillator is the nucleation and subsequent steady-state rotational dynamics of a magnetic vortex dipole driven by the localized spin torque. These results show this novel implementation of a spintronic nano-oscillator is a promising candidate for microwave technology applications.Comment: 19 pages, 4 figures
    corecore