1,626 research outputs found

    Upcoming planetary missions and the applicability of high temperature superconductor bolometers

    Get PDF
    Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. CRAF and CASSINI, both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is a cometary rendezvous mission slated for a 1994 launch. CASSINI has been chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer (CIRS) that will be proposed for the CASSINI mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce th 1/f noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using an MOCVD technique

    Interacting bosons in an optical lattice: Bose-Einstein condensates and Mott insulator

    Full text link
    A dense Bose gas with hard-core interaction is considered in an optical lattice. We study the phase diagram in terms of a special mean-field theory that describes a Bose-Einstein condensate and a Mott insulator with a single particle per lattice site for zero as well as for non-zero temperatures. We calculate the densities, the excitation spectrum and the static structure factor for each of these phases.Comment: 17 pages, 5 figures; 1 figure added, typos remove

    A renormalized Gross-Pitaevskii Theory and vortices in a strongly interacting Bose gas

    Full text link
    We consider a strongly interacting Bose-Einstein condensate in a spherical harmonic trap. The system is treated by applying a slave-boson representation for hard-core bosons. A renormalized Gross-Pitaevskii theory is derived for the condensate wave function that describes the dilute regime (like the conventional Gross-Pitaevskii theory) as well as the dense regime. We calculate the condensate density of a rotating condensate for both the vortex-free condensate and the condensate with a single vortex and determine the critical angular velocity for the formation of a stable vortex in a rotating trap.Comment: 13 pages, 5 figures; revision and extension, figure 2 adde

    Reconstructing emission from pre-reionization sources with cosmic infrared background fluctuation measurements by the JWST

    Full text link
    We present new methodology to use cosmic infrared background (CIB) fluctuations to probe sources at 10<z<30 from a JWST/NIRCam configuration that will isolate known galaxies to 28 AB mag at 0.5--5 micron. At present significant mutually consistent source-subtracted CIB fluctuations have been identified in the Spitzer and Akari data at 2--5 micron, but we demonstrate internal inconsistencies at shorter wavelengths in the recent CIBER data. We evaluate CIB contributions from remaining galaxies and show that the bulk of the high-z sources will be in the confusion noise of the NIRCam beam, requiring CIB studies. The accurate measurement of the angular spectrum of the fluctuations and probing the dependence of its clustering component on the remaining shot noise power would discriminate between the various currently proposed models for their origin and probe the flux distribution of its sources. We show that the contribution to CIB fluctuations from remaining galaxies is large at visible wavelengths for the current instruments precluding probing the putative Lyman-break of the CIB fluctuations. We demonstrate that with the proposed JWST configuration such measurements will enable probing the Lyman break. We develop a Lyman-break tomography method to use the NIRCam wavelength coverage to identify or constrain, via the adjacent two-band subtraction, the history of emissions over 10<z<30 as the Universe comes out of the 'Dark Ages'. We apply the proposed tomography to the current Spitzer/IRAC measurements at 3.6 and 4.5 micron, to find that it already leads to interestingly low upper limit on emissions at z>30.Comment: ApJ, in press. Minor revisions/additions to match the version in proof

    The 1/N Expansion in Noncommutative Quantum Mechanics

    Full text link
    We study the 1/N expansion in noncommutative quantum mechanics for the anharmonic and Coulombian potentials. The expansion for the anharmonic oscillator presented good convergence properties, but for the Coulombian potential, we found a divergent large N expansion when using the usual noncommutative generalization of the potential. We proposed a modified version of the noncommutative Coulombian potential which provides a well-behaved 1/N expansion.Comment: v2: resided version, to appear in PRD, 18 pages, 4 figure

    A case-matched study of neurophysiological correlates to attention /working memory in people with somatic hypervigilance

    Get PDF
    Accepted 14 June 2016Somatic hypervigilance describes a clinical presentation in which people report more, and more intense, bodily sensations than is usual. Most explanations of somatic hypervigilance implicate altered information processing, but strong empirical data are lacking. Attention and working memory are critical for information processing, and we aimed to evaluate brain activity during attention/working memory tasks in people with and without somatic hypervigilance. Method: Data from 173 people with somatic hypervigilance and 173 controls matched for age, gender, handedness, and years of education were analyzed. Event-related potential (ERP) data, extracted from the continuous electroencephalograph recordings obtained during performance of the Auditory Oddball task, and the Two In A Row (TIAR) task, for N1, P2, N2, and P3, were used in the analysis. Between-group differences for P3 amplitude and N2 amplitude and latency were assessed with two-tailed independent t tests. Between-group differences for N1 and P2 amplitude and latency were assessed using mixed, repeated measures analyses of variance (ANOVAs) with group and Group × Site factors. Linear regression analysis investigated the relationship between anxiety and depression and any outcomes of significance. Results: People with somatic hypervigilance showed smaller P3 amplitudes—Auditory Oddball task: t(285) = 2.32, 95% confidence interval, CI [3.48, 4.47], p = .026, d = 0.27; Two-In-A-Row (TIAR) task: t(334) = 2.23, 95% CI [2.20; 3.95], p = .021, d = 0.24—than case-matched controls. N2 amplitude was also smaller in people with somatic hypervigilance—TIAR task: t(318) = 2.58, 95% CI [0.33, 2.47], p = .010, d = 0.29—than in case-matched controls. Neither depression nor anxiety was significantly associated with any outcome. Conclusion: People with somatic hypervigilance demonstrated an event-related potential response to attention/working memory tasks that is consistent with altered information processing.Carolyn Berryman, Vikki Wise, Tasha R. Stanton, Alexander McFarlane and G. Lorimer Mosele

    The disappearing hand: vestibular stimulation does not improve hand localisation.

    Get PDF
    Bodily self-consciousness depends on the coherent integration of sensory information. In addition to visual and somatosensory information processing, vestibular contributions have been proposed and investigated. Vestibular information seems especially important for self-location, but remains difficult to study. This randomised controlled experiment used the MIRAGE multisensory illusion box to induce a conflict between the visually- and proprioceptively-encoded position of one hand. Over time, the perceived location of the hand slowly shifts, due to the fact that proprioceptive input is progressively weighted more heavily than the visual input. We hypothesised that left cold caloric vestibular stimulation (CVS) augments this shift in hand localisation. The results from 24 healthy participants do not support our hypothesis: CVS had no effect on the estimations with which the perceived position of the hand shifted from the visually- to the proprioceptively-encoded position. Participants were more likely to report that their hand was 'no longer there' after CVS. Taken together, neither the physical nor the subjective data provide evidence for vestibular enhanced self-location

    Instability of insulating states in optical lattices due to collective phonon excitations

    Full text link
    The role of collective phonon excitations on the properties of cold atoms in optical lattices is investigated. These phonon excitations are collective excitations, whose appearance is caused by intersite atomic interactions correlating the atoms, and they do not arise without such interactions. These collective excitations should not be confused with lattice vibrations produced by an external force. No such a force is assumed. But the considered phonons are purely self-organized collective excitations, characterizing atomic oscillations around lattice sites, due to intersite atomic interactions. It is shown that these excitations can essentially influence the possibility of atoms to be localized. The states that would be insulating in the absence of phonon excitations can become delocalized when these excitations are taken into account. This concerns long-range as well as local atomic interactions. To characterize the region of stability, the Lindemann criterion is used.Comment: Latex file, 27 pages, 1 figur

    A fine-scale, broadly applicable index of vocal performance: frequency excursion

    Get PDF
    Our understanding of the evolution and function of animal displays has been advanced through studies of vocal performance. A widely used metric of vocal performance, vocal deviation, is limited by being applicable only to vocal trills, and also overlooks certain fine-scale aspects of song structure that might reflect vocal performance. In light of these limitations we here introduce a new index of vocal performance, \u27frequency excursion\u27. Frequency excursion calculates, for any given song or song segment, the sum of frequency modulations both within and between notes on a per-time basis. We calculated and compared the two performance metrics in three species: chipping sparrows, Spizella passerina, swamp sparrows, Melospiza georgiana, and song sparrows, Melospiza melodia. The two metrics correlated as expected, yet frequency excursion accounted for subtle variations in performance overlooked by vocal deviation. In swamp sparrows, frequency excursion values varied significantly by song type but not by individual. Moreover, song type performance in swamp sparrows, according to both metrics, varied negatively with the extent to which song types were shared among neighbours. In song sparrows, frequency excursion values of trilled song segments exceeded those of nontrilled song segments, although not to a statistically significant degree. We suggest that application of frequency excursion in birds and other taxa will provide new insights into diverse open questions concerning vocal performance, function and evolution. (c) 2016 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved

    Immunocytochemical demonstration of PTHrP protein in neoplastic tissue of HTLV-1 positive human adult T cell leukaemia/lymphoma: implications for the mechanism of hypercalcaemia.

    Get PDF
    The infiltrated tissues from seven West Indian patients with HTLV-1 positive adult T cell lymphoma/leukaemia (ATLL) have been analysed by immunocytochemical techniques for the presence of immunoreactive parathyroid hormone-related protein (PTHrP), a hormonal mediator of humoral hypercalcaemia of malignancy. Six of the seven were hypercalcaemic at some stage of the course of their disease. Four of the six evaluable patients showed evidence of specific cellular and extracellular expression of PTHrP protein in neoplastic tissues. This finding suggests that PTHrP may be involved in the production of hypercalcaemia in at least some cases of T cell lymphoma - proof of a causal relationship however must await the demonstration of tissue release of PTHrP resulting in raised circulating hormone levels
    corecore