502 research outputs found

    Heavy Quark Radiative Energy Loss - Applications to RHIC

    Full text link
    Heavy quark energy loss in a hot QCD plasma is computed taking into account the competing effects due to suppression of zeroth order gluon radiation bellow the plasma frequency and the enhancement of gluon radiation due to transition energy loss and medium induced Bremsstrahlung. Heavy quark medium induced radiative energy loss is derived to all orders in opacity, (L/λg)n(L/\lambda_g)^n. Numerical evaluation of the energy loss suggest small suppression of high pp_\perp charm quarks, and therefore provide a possible explanation for the null effects observed by PHENIX in the prompt electron spectrum in Au+AuAu+Au as s=130\sqrt{s}=130 and 200 AGeV.Comment: 4 pages, 4 figures, Contributed to 17th International Conference on Ultra Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California, 11-17 Jan 200

    On Finite Noncommutativity in Quantum Field Theory

    Full text link
    We consider various modifications of the Weyl-Moyal star-product, in order to obtain a finite range of nonlocality. The basic requirements are to preserve the commutation relations of the coordinates as well as the associativity of the new product. We show that a modification of the differential representation of the Weyl-Moyal star-product by an exponential function of derivatives will not lead to a finite range of nonlocality. We also modify the integral kernel of the star-product introducing a Gaussian damping, but find a nonassociative product which remains infinitely nonlocal. We are therefore led to propose that the Weyl-Moyal product should be modified by a cutoff like function, in order to remove the infinite nonlocality of the product. We provide such a product, but it appears that one has to abandon the possibility of analytic calculation with the new product.Comment: 13 pages, reference adde

    Color Diffusion and Conductivity in a Quark-Gluon Plasma

    Full text link
    Color diffusion is shown to be an important dissipative property of quark-gluon plasmas that rapidly damps collective color modes. We derive the characteristic color relaxation time scale, tc(3αsTlog(mE/mM))1t_c\approx (3\alpha_s T \log(m_E/m_M ))^{-1}, showing its sensitivity to the ratio of the static color electric and magnetic screening masses. This leads to a surprisingly small color conductivity, σc2T/log(mE/mM)\sigma_c\approx 2 T/\log(m_E/m_M), which in fact vanishes in the semi-classical (1-loop) limit.Comment: 11 pages, Columbia University Preprint CU-TP-59

    Small-Size Resonant Photoacoustic Cell of Inclined Geometry for Gas Detection

    Full text link
    A photoacoustic cell intended for laser detection of trace gases is represented. The cell is adapted so as to enhance the gas-detection performance and, simultaneously, to reduce the cell size. The cell design provides an efficient cancellation of the window background (a parasite response due to absorption of laser beam in the cell windows) and acoustic isolation from the environment for an acoustic resonance of the cell. The useful photoacoustic response from a detected gas, window background and noise are analyzed in demonstration experiments as functions of the modulation frequency for a prototype cell with the internal volume ~ 0.5 cm^3. The minimal detectable absorption for the prototype is estimated to be ~ 1.2 10^{-8} cm^{-1} W Hz^{-1/2}.Comment: 11 pages, 5 figure

    Platelet Counts and Postoperative Stroke After Coronary Artery Bypass Grafting Surgery

    Get PDF
    BACKGROUND: Declining platelet counts may reveal platelet activation and aggregation in a postoperative prothrombotic state. Therefore, we hypothesized that nadir platelet counts after on-pump coronary artery bypass grafting (CABG) surgery are associated with stroke. METHODS: We evaluated 6130 adult CABG surgery patients. Postoperative platelet counts were evaluated as continuous and categorical (mild versus moderate to severe) predictors of stroke. Extended Cox proportional hazard regression analysis with a time-varying covariate for daily minimum postoperative platelet count assessed the association of day-to-day variations in postoperative platelet count with time to stroke. Competing risks proportional hazard regression models examined associations between day-to-day variations in postoperative platelet counts with timing of stroke (early: 0-1 days; delayed: ≥2 days). RESULTS: Median (interquartile range) postoperative nadir platelet counts were 123.0 (98.0-155.0) × 10/L. The incidences of postoperative stroke were 1.09%, 1.50%, and 3.02% for platelet counts >150 × 10/L, 100 to 150 × 10/L, and 150 × 10/L. Importantly, such thrombocytopenia, defined as a time-varying covariate, was significantly associated with delayed (≥2 days after surgery; adjusted HR, 2.83; 95% CI, 1.48-5.41; P= .0017) but not early postoperative stroke. CONCLUSIONS: Our findings suggest an independent association between moderate to severe postoperative thrombocytopenia and postoperative stroke, and timing of stroke after CABG surgery

    Testing the Resolving Power of 2-D K^+ K^+ Interferometry

    Get PDF
    Adopting a procedure previously proposed to quantitatively study two-dimensional pion interferometry, an equivalent 2-D chi^2 analysis was performed to test the resolving power of that method when applied to less favorable conditions, i.e., if no significant contribution from long lived resonances is expected, as in kaon interferometry. For that purpose, use is made of the preliminary E859 K^+ K^+ interferometry data from Si+Au collisions at 14.6 AGeV/c. As expected, less sensitivity is achieved in the present case, although it still is possible to distinguish two distinct decoupling geometries. The present analysis seems to favor scenarios with no resonance formation at the AGS energy range, if the preliminary K^+ K^+ data are confirmed. The possible compatibility of data with zero decoupling proper time interval, conjectured by the 3-D experimental analysis, is also investigated and is ruled out when considering more realistic dynamical models with expanding sources. These results, however, clearly evidence the important influence of the time emission interval on the source effective transverse dimensions. Furthermore, they strongly emphasize that the static Gaussian parameterization, commonly used to fit data, cannot be trusted under more realistic conditions, leading to distorted or even wrong interpretation of the source parameters!Comment: 11 pages, RevTeX, 4 Postscript figures include

    A two-layer approach to the coupled coherent states method

    Get PDF
    In this paper a two-layer scheme is outlined for the coupled coherent states (CCS) method, dubbed two-layer CCS (2L-CCS). The theoretical framework is motivated by that of the multiconfigurational Ehrenfest (MCE) method, where different dynamical descriptions are used for different subsystems of a quantum mechanical system. This leads to a flexible representation of the wavefunction, making the method particularly suited to the study of composite systems. It was tested on a 20-dimensional asymmetric system-bath tunnelling problem, with results compared to a benchmark calculation, as well as existing CCS, MP/SOFT and CI expansion methods. The two-layer method was found to lead to improved short and long term propagation over standard CCS, alongside improved numerical efficiency and parallel scalability. These promising results provide impetus for future development of the method for on-the-fly direct dynamics calculations

    Parallel iterative solvers for real-time elastic deformations

    Get PDF
    Physics-based animation of elastic materials allows to simulate dynamic deformable objects such as fabrics, human tissue, hair, etc. Due to their complex inner mechanical behaviour, it is difficult to replicate their motions interactively and accurately at the same time. This course introduces students and practitioners to several parallel iterative techniques to tackle this problem and achieve elastic deformations in real-time. We focus on techniques for applications such as video games and interactive design, with\ua0fixed and small hard time budgets\ua0available for physically-based animation, and where responsiveness and stability are often more important than accuracy, as long as the results are believable. The course focuses on solvers able to fully exploit the computational capabilities of modern GPU architectures, effectively solving systems of hundreds of thousands of nonlinear equations in a matter of few milliseconds. The course introduces the basic concepts concerning physics-based elastic objects, and provide an overview of the different types of numerical solvers available in the literature. Then, we show how some variants of traditional solvers can address real-time animation and assess them in terms of accuracy, robustness and performance. Practical examples are provided throughout the course, in particular how to apply the depicted solvers to Projective Dynamics and Position-based Dynamics, two recent and popular physics models for elastic materials
    corecore