6,537 research outputs found

    X-ray variability of AGNs in the soft and the hard X-ray bands

    Full text link
    We investigate the X-ray variability characteristics of hard X-ray selected AGNs (based on Swift/BAT data) in the soft X-ray band using the RXTE/ASM data. The uncertainties involved in the individual dwell measurements of ASM are critically examined and a method is developed to combine a large number of dwells with appropriate error propagation to derive long duration flux measurements (greater than 10 days). We also provide a general prescription to estimate the errors in variability derived from rms values from unequally spaced data. Though the derived variability for individual sources are not of very high significance, we find that, in general, the soft X-ray variability is higher than those in hard X-rays and the variability strengths decrease with energy for the diverse classes of AGN. We also examine the strength of variability as a function of the break time scale in the power density spectrum (derived from the estimated mass and bolometric luminosity of the sources) and find that the data are consistent with the idea of higher variability at time scales longer than the break time scale.Comment: 17 pages, 15 Postscript figures, 3 tables, accepted for publication in Ap

    Evidence for a Truncated Accretion Disc in the Low Luminosity Seyfert Galaxy, NGC 7213?

    Full text link
    We present the broad-band 0.6-150 keV Suzaku and Swift BAT spectra of the low luminosity Seyfert galaxy, NGC 7213. The time-averaged continuum emission is well fitted by a single powerlaw of photon index Gamma = 1.75 and from consideration of the Fermi flux limit we constrain the high energy cutoff to be 350 keV < E < 25 MeV. Line emission from both near-neutral iron K_alpha at 6.39 keV and highly ionised iron, from Fe_(xxv) and Fe_(xxvi), is strongly detected in the Suzaku spectrum, further confirming the results of previous observations with Chandra and XMM-Newton. We find the centroid energies for the Fe_(xxv) and Fe_(xxvi) emission to be 6.60 keV and 6.95 keV respectively, with the latter appearing to be resolved in the Suzaku spectrum. We show that the Fe_(xxv) and Fe_(xxvi) emission can result from a highly photo-ionised plasma of column density N_(H) ~ 3 x 10^(23) cm^(-2). A Compton reflection component, e.g., originating from an optically-thick accretion disc or a Compton-thick torus, appears either very weak or absent in this AGN, subtending < 1 sr to the X-ray source, consistent with previous findings. Indeed the absence of either neutral or ionised Compton reflection coupled with the lack of any relativistic Fe K signatures in the spectrum suggests that an inner, optically-thick accretion disc is absent in this source. Instead, the accretion disc could be truncated with the inner regions perhaps replaced by a Compton-thin Radiatively Inefficient Accretion Flow. Thus, the Fe_(xxv) and Fe_(xxvi) emission could both originate in ionised material perhaps at the transition region between the hot, inner flow and the cold, truncated accretion disc on the order of 10^(3) - 10^(4) gravitational radii from the black hole. The origin for the unresolved neutral Fe K_alpha emission is then likely to be further out, perhaps originating in the optical BLR or a Compton-thin pc-scale torus.Comment: 15 pages, 11 figures, accepted for publication by MNRA

    Collective behavior of stock price movements in an emerging market

    Full text link
    To investigate the universality of the structure of interactions in different markets, we analyze the cross-correlation matrix C of stock price fluctuations in the National Stock Exchange (NSE) of India. We find that this emerging market exhibits strong correlations in the movement of stock prices compared to developed markets, such as the New York Stock Exchange (NYSE). This is shown to be due to the dominant influence of a common market mode on the stock prices. By comparison, interactions between related stocks, e.g., those belonging to the same business sector, are much weaker. This lack of distinct sector identity in emerging markets is explicitly shown by reconstructing the network of mutually interacting stocks. Spectral analysis of C for NSE reveals that, the few largest eigenvalues deviate from the bulk of the spectrum predicted by random matrix theory, but they are far fewer in number compared to, e.g., NYSE. We show this to be due to the relative weakness of intra-sector interactions between stocks, compared to the market mode, by modeling stock price dynamics with a two-factor model. Our results suggest that the emergence of an internal structure comprising multiple groups of strongly coupled components is a signature of market development.Comment: 10 pages, 10 figure

    FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    Get PDF
    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the form of a discrete, transient blob of ejected material

    Portfolio Optimization and the Random Magnet Problem

    Full text link
    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movement of assets are are mutually correlated and therefore knowledge of cross--correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this ``random magnet problem'' are given by the cross-correlation matrix {\bf \sf C} of stock returns. We find that random matrix theory allows us to make an estimate for {\bf \sf C} which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.Comment: 12 pages, 4 figures, revte
    • …
    corecore