6,723 research outputs found
Localized states at zigzag edges of bilayer graphene
We report the existence of zero energy surface states localized at zigzag
edges of bilayer graphene. Working within the tight-binding approximation we
derive the analytic solution for the wavefunctions of these peculiar surface
states. It is shown that zero energy edge states in bilayer graphene can be
divided into two families: (i) states living only on a single plane, equivalent
to surface states in monolayer graphene; (ii) states with finite amplitude over
the two layers, with an enhanced penetration into the bulk. The bulk and
surface (edge) electronic structure of bilayer graphene nanoribbons is also
studied, both in the absence and in the presence of a bias voltage between
planes.Comment: 4 pages, 5 figure
Métodos dos momentos
Os métodos utilizados na resolução de problemas, nos vários ramos da Engenharia ou ciências aplicadas, baseiam-se, actualmente, em uma de duas categorias: métodos analíticos e métodos numéricos.
É preferível a utilização dos métodos analíticos, na resolução de equações ou outros modelos matemáticos, sempre que possível, uma vez que formamões gerais em vez de particularizadas, para além de uma maior informação
Bilayer graphene: gap tunability and edge properties
Bilayer graphene -- two coupled single graphene layers stacked as in graphite
-- provides the only known semiconductor with a gap that can be tuned
externally through electric field effect. Here we use a tight binding approach
to study how the gap changes with the applied electric field. Within a parallel
plate capacitor model and taking into account screening of the external field,
we describe real back gated and/or chemically doped bilayer devices. We show
that a gap between zero and midinfrared energies can be induced and externally
tuned in these devices, making bilayer graphene very appealing from the point
of view of applications. However, applications to nanotechnology require
careful treatment of the effect of sample boundaries. This being particularly
true in graphene, where the presence of edge states at zero energy -- the Fermi
level of the undoped system -- has been extensively reported. Here we show that
also bilayer graphene supports surface states localized at zigzag edges. The
presence of two layers, however, allows for a new type of edge state which
shows an enhanced penetration into the bulk and gives rise to band crossing
phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on
Theoretical Physics: Dubna-Nano200
Evolution of squeezed states under the Fock-Darwin Hamiltonian
We develop a complete analytical description of the time evolution of
squeezed states of a charged particle under the Fock-Darwin Hamiltonian and a
time-dependent electric field. This result generalises a relation obtained by
Infeld and Pleba\'nski for states of the one-dimensional harmonic oscillator.
We relate the evolution of a state-vector subjected to squeezing to that of
state which is not subjected to squeezing and for which the time-evolution
under the simple harmonic oscillator dynamics is known (e.g. an eigenstate of
the Hamiltonian). A corresponding relation is also established for the Wigner
functions of the states, in view of their utility in the analysis of cold-ion
experiments. In an appendix, we compute the response functions of the FD
Hamiltonian to an external electric field, using the same techniques as in the
main text
Quebra de dormência de macieira (Malus domestica) Eva cultivada no Vale do São Francisco.
O objetivo deste estudo foi avaliar o efeito de doses de cianamida hidrogenada (CH), nitrato 23 de cálcio (NC) e nitrato de potássio (NK) na quebra da dormência de macieiras, cultivar Eva no Vale do São Francisco, em Petrolina-PE
Improved algorithm for neuronal ensemble inference by Monte Carlo method
Neuronal ensemble inference is one of the significant problems in the study
of biological neural networks. Various methods have been proposed for ensemble
inference from their activity data taken experimentally. Here we focus on
Bayesian inference approach for ensembles with generative model, which was
proposed in recent work. However, this method requires large computational
cost, and the result sometimes gets stuck in bad local maximum solution of
Bayesian inference. In this work, we give improved Bayesian inference algorithm
for these problems. We modify ensemble generation rule in Markov chain Monte
Carlo method, and introduce the idea of simulated annealing for hyperparameter
control. We also compare the performance of ensemble inference between our
algorithm and the original one.Comment: 14 pages, 3 figure
- …