33 research outputs found

    Enterprise Education Competitions: A Theoretically Flawed Intervention?

    Get PDF
    The demand for including enterprise in the education system, at all levels and for all pupils is now a global phenomenon. Within this context, the use of competitions and competitive learning activities is presented as a popular and effective vehicle for learning. The purpose of this chapter is to illustrate how a realist method of enquiry – which utilises theory as the unit of analysis – can shed new light on the assumed and unintended outcomes of enterprise education competitions. The case developed here is that there are inherent flaws in assuming that competitions will ‘work’ in the ways set out in policy and guidance. Some of the most prevalent stated outcomes – that competitions will motivate and reward young people, that they will enable the development of entrepreneurial skills, and that learners will be inspired by their peers – are challenged by theory from psychology and education. The issue at stake is that the expansion of enterprise education policy into primary and secondary education increases the likelihood that more learners will be sheep dipped in competitions, and competitive activities, without a clear recognition of the potential unintended effects. In this chapter, we employ a realist-informed approach to critically evaluate the theoretical basis that underpins the use of competitions and competitive learning activities in school-based enterprise education. We believe that our findings and subsequent recommendations will provide those who promote and practice the use of competitions with a richer, more sophisticated picture of the potential flaws within such activities.Peer reviewedFinal Published versio

    Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes

    Get PDF
    Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems

    Classification of European chestnut vegetation based on numerical elaboration.

    No full text

    Disclosing the thermal reactions of aliphatic amines in the presence of TiO2 nanoparticles by multi-shot analytical pyrolysis

    No full text
    Analytical pyrolysis is a powerful tool to study the thermal behaviour of organic compounds, but relatively little information is available on the pyrolysis of amines, especially when bound to inorganic systems. In this study, we analysed aliphatic amines (propylamine, dipropylamine, tripropylamine, and tert-butylamine), both as pure compounds and bound to titania nanoparticles, using multi-shot analytical pyrolysis-gas chromatography coupled to mass spectrometry (Py-GC–MS) with a liquid nitrogen cryo-trap system. Desorption of amines was observed at 260 °C, while pyrolysis reactions were mostly observed at 600 °C. Pure amines underwent intermolecular reactions, generating heavier nitrogen-containing compounds. Conversely, amines bound to titania nanoparticles underwent loss of ammonia and hydrogen, and both inter- and intramolecular couplings generate unsaturated hydrocarbons and aromatics. Differences in the pyrolysis mechanisms were attributed to the catalytic effect of the nanoparticles. The present work provides fundamental information on the pyrolytic behaviour of aliphatic amines and on the catalytic effect of titania nanoparticles

    Pyrolysis mechanism of aliphatic amines bound to titania nanoparticles after H2O2 oxidation

    No full text
    Organic compounds bound to peroxotitanates can influence the photocatalytic activity of TiO2 nanoparticles (NPs) obtained by subsequent annealing. Knowledge of how this influence plays out is fundamental for the development of NPs with desirable catalytic behavior, which can be used for several applications. Thermoana-lytical techniques can be used to simulate the annealing process on a small scale, but there is a lack of literature on this topic. This is especially true for nitrogen-containing organic compounds, which are not often used as organic modifiers in NP synthesis. Here, we present a multianalytical study of the pyrolytic behavior of the organic fraction of amine-functionalized titania NPs after peroxide treatment (namely peroxotitanate nano -particles modified with aliphatic amines). The study was carried out by TGA-MS, evolved gas analysis-mass spectrometry (EGA-MS) and double-shot analytical pyrolysis-GC-MS. The most abundant peaks in the GC-MS profiles obtained after thermal desorption were ascribed to nitriles, unsaturated hydrocarbons, and oxygen-ated compounds, whose total relative areas accounted for almost 100% for DPA and up to 70% for the other amines. This indicated that the presence of an N-Ti bond modulated the oxidating effect of hydrogen peroxide. Pyrolysis of the residual organic fraction on oxidized NPs underwent coupling reactions that led to the formation of aromatic species and, most interestingly, heteroaromatic compounds

    Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    No full text
    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site
    corecore