280 research outputs found

    Deposition of polymer bilayer configuration by pulsed laser ablation and its use for study of polymer-polymer interface

    Get PDF
    Thin films of polyphenylene sulphide (PPS) and polyethylene (PE) polymers have been deposited in a bilayer configuration using pulsed excimer laser ablation. Such bilayer specimens have been annealed at different temperatures, up to a maximum of 120°C, and for different time intervals, up to a maximum of 110 min, to investigate the evolution of the interface. By employing the technique of spectroscopic ellipsometry, the nature and the degree of thermally induced polymeric transport across the interface are brought out

    Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs

    Full text link
    In a composite system of gravitationally coupled stellar and gaseous discs, we perform linear stability analysis for axisymmetric coplanar perturbations using the two-fluid formalism. The background stellar and gaseous discs are taken to be scale-free with all physical variables varying as powers of cylindrical radius rr with compatible exponents. The unstable modes set in as neutral modes or stationary perturbation configurations with angular frequency ω=0\omega=0.Comment: 7 pages using AAS styl

    Star cluster formation and star formation: the role of environment and star-formation efficiencies

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0088-5By analyzing global starburst properties in various kinds of starburst and post-starburst galaxies and relating them to the properties of the star cluster populations they form, I explore the conditions for the formation of massive, compact, long-lived star clusters. The aim is to determine whether the relative amount of star formation that goes into star cluster formation as opposed to field star formation, and into the formation of massive long-lived clusters in particular, is universal or scales with star-formation rate, burst strength, star-formation efficiency, galaxy or gas mass, and whether or not there are special conditions or some threshold for the formation of star clusters that merit to be called globular clusters a few billion years later.Peer reviewe

    Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies

    Full text link
    New high resolution interferometer data of 10 IR ultraluminous galaxies shows the molecular gas is in rotating nuclear rings or disks with radii 300 to 800 pc. Most of the CO flux comes from a moderate-density, warm, intercloud medium rather than self-gravitating clouds. Gas masses of ~ 5 x 10^9 Msun, 5 times lower than the standard method are derived from a model of the molecular disks. The ratio of molecular gas to dynamical mass, is M_gas/M_dyn ~ 1/6 with a maximum ratio of gas to total mass surface density of 1/3. For the galaxies VIIZw31, Arp193, and IRAS 10565+24, there is good evidence for rotating molecular rings with a central gap. In addition to the rotating rings a new class of star formation region is identified which we call an Extreme Starburst. They have a characteristic size of only 100 pc., about 10^9 Msun of gas and an IR luminosity of ~3 x 10^11 Lsun. Four extreme starbursts are identified in the 3 closest galaxies in the sample Arp220, Arp193 and Mrk273. They are the most prodigious star formation events in the local universe, each representing about 1000 times as many OB stars as 30 Doradus. In Arp220, the CO and 1.3 mm continuum maps show the two ``nuclei'' embedded in a central ring or disk and a fainter structure extending 3 kpc to the east, normal to the nuclear disk. There is no evidence that these sources really are the pre-merger nuclei. They are compact, extreme starburst regions containing 10^9 Msun of dense molecular gas and new stars, but no old stars. Most of the dust emission and HCN emission arises in the two extreme starbursts. The entire bolometric luminosity of Arp~220 comes from starbursts, not an AGN. In Mrk231, the disk geometry shows that the molecular disk cannot be heated by the AGN; the far IR luminosity of Mrk~231 is powered by a starburst, not the AGN. (Abridged)Comment: 97 pages Latex with aasms.sty, including 29 encapsulated Postscript figures. Figs 18 and 23 are GIFs. 31 figures total. Text and higher quality versions of figures available at http://sbastk.ess.sunysb.edu/www/RINGS_ESB_PREPRINT.html To be published in Ap. J., 10 Nov. 199

    Minimum Velocity Dispersion in Stable Stellar Disks. Numerical Simulations

    Full text link
    N-body dynamical simulations are used to analyze the conditions for the gravitational stability of a three-dimensional stellar disk in the gravitational field of two rigid spherical components--a bulge and a halo whose central concentrations and relative masses vary over wide ranges. The number of point masses N in the simulations varies from 40 to 500 thousands and the evolution of the simulated models is followed over 10--20 rotation periods of the outer edge of the disk. The initially unstable disks are heated and, as a rule, reach a quasi-stationary equilibrium with a steady-state radial-velocity dispersion crc_r over five to eight periods of rotation. The radial behavior of the Toomre stability parameter QT(r)Q_T (r) for the final state of the disk is estimated. Numerical models are used to analyze the dependence of the gravitational stability of the disk on the relative masses of the spherical components, disk thickness, degree of differential rotation, and initial state of the disk. Formal application of existing, analytical, local criteria for marginal stability of the disk can lead to errors in radial velocity dispersion crc_r of more than a factor of 1.5. It is suggested that the approximate constancy of QT1.21.5Q_T \simeq 1.2 -- 1.5 for r(1÷2)×Lr\simeq (1\div 2)\times L (where L is the radial scale of disk surface density), valid for a wide range of models, can be used to estimate upper limits for the mass and density of a disk based on the observed distributions of the rotational velocity of the gaseous component and of the stellar velocity dispersion.Comment: 33 pages, 8 Figs. Published in Astronomy Reports,2003,v.47,p.357 The paper may also be found at http://neptun.sai.msu.su/~zasov/articles/k_z.zi

    Results from PAMELA, ATIC and FERMI : Pulsars or Dark Matter ?

    Full text link
    It is well known that the dark matter dominates the dynamics of galaxies and clusters of galaxies. Its constituents remain a mystery despite an assiduous search for them over the past three decades. Recent results from the satellite-based PAMELA experiment detect an excess in the positron fraction at energies between 10-100 GeV in the secondary cosmic ray spectrum. Other experiments namely ATIC, HESS and FERMI show an excess in the total electron (\ps + \el) spectrum for energies greater 100 GeV. These excesses in the positron fraction as well as the electron spectrum could arise in local astrophysical processes like pulsars, or can be attributed to the annihilation of the dark matter particles. The second possibility gives clues to the possible candidates for the dark matter in galaxies and other astrophysical systems. In this article, we give a report of these exciting developments.Comment: 27 Pages, extensively revised and significantly extended, to appear in Pramana as topical revie

    In-vivo Imaging of Magnetic Fields Induced by Transcranial Direct Current Stimulation (tDCS) in Human Brain using MRI

    Full text link
    Transcranial direct current stimulation (tDCS) is an emerging non-invasive neuromodulation technique that applies mA currents at the scalp to modulate cortical excitability. Here, we present a novel magnetic resonance imaging (MRI) technique, which detects magnetic fields induced by tDCS currents. This technique is based on Ampere’s law and exploits the linear relationship between direct current and induced magnetic fields. Following validation on a phantom with a known path of electric current and induced magnetic field, the proposed MRI technique was applied to a human limb (to demonstrate invivo feasibility using simple biological tissue) and human heads (to demonstrate feasibility in standard tDCS applications). The results show that the proposed technique detects tDCS induced magnetic fields as small as a nanotesla at millimeter spatial resolution. Through measurements of magnetic fields linearly proportional to the applied tDCS current, our approach opens a new avenue for direct in-vivo visualization of tDCS target engagement

    Periodic Pattern in the Residual-Velocity Field of OB Associations

    Full text link
    An analysis of the residual-velocity field of OB associations within 3 kpc of the Sun has revealed periodic variations in the radial residual velocities along the Galactic radius vector with a typical scale length of lambda=2.0(+/-0.2) kpc and a mean amplitude of fR=7(+/-1) km/s. The fact that the radial residual velocities of almost all OB-associations in rich stellar-gas complexes are directed toward the Galactic center suggests that the solar neighborhood under consideration is within the corotation radius. The azimuthal-velocity field exhibits a distinct periodic pattern in the region 0<l<180 degrees, where the mean azimuthal-velocity amplitude is ft=6(+/-2) km/s. There is no periodic pattern of the azimuthal-velocity field in the region 180<l<360 degrees. The locations of the Cygnus arm, as well as the Perseus arm, inferred from an analysis of the radial- and azimuthal-velocity fields coincide. The periodic patterns of the residual-velocity fields of Cepheids and OB associations share many common features.Comment: 21 page

    Galaxy Collisions - Dawn of a New Era

    Full text link
    The study of colliding galaxies has progressed rapidly in the last few years, driven by observations with powerful new ground and space-based instruments. These instruments have used for detailed studies of specific nearby systems, statistical studies of large samples of relatively nearby systems, and increasingly large samples of high redshift systems. Following a brief summary of the historical context, this review attempts to integrate these studies to address the following key issues. What role do collisions play in galaxy evolution, and how can recently discovered processes like downsizing resolve some apparently contradictory results of high redshift studies? What is the role of environment in galaxy collisions? How is star formation and nuclear activity orchestrated by the large scale dynamics, before and during merger? Are novel modes of star formation involved? What are we to make of the association of ultraluminous X-ray sources with colliding galaxies? To what do degree do mergers and feedback trigger long-term secular effects? How far can we push the archaeology of individual systems to determine the nature of precursor systems and the precise effect of the interaction? Tentative answers to many of these questions have been suggested, and the prospects for answering most of them in the next few decades are good.Comment: 44 pages, 9 figures, review article in press for Astrophysics Update Vol.
    corecore