6,654 research outputs found
Statistical and stability analyses of neural pulse frequency modulator Semiannual status report, period ending 1 Feb. 1969
Statistical analysis of neural pulse frequency modulato
Vision-related symptoms as a clinical feature of chronic fatigue syndrome/myalgic encephalomyelitis? Evidence from the DePaul Symptom Questionnaire
Chronic Fatigue Syndrome (CFS) or Myalgic Encephalomyelitis (ME) is a debilitating disorder, affecting at least 250,000 people in the UK. Marked by debilitating fatigue, its aetiology is poorly understood and diagnosis controversial. A number of symptoms overlap with other illnesses with the result that CFS/ME is commonly misdiagnosed. It is important therefore that significant clinical features are investigated. People diagnosed with CFS/ME consistently report that they experience vision-related symptoms associated with their illness1-3 with some of these reports being verified experimentally. Although vision-related symptoms may represent a significant clinical feature of CFS/ME that could be useful in its diagnosis, they have yet to be included in clinical guidelines
Forelimb muscle and joint actions in Archosauria: insights from Crocodylus johnstoni (Pseudosuchia) and Mussaurus patagonicus (Sauropodomorpha)
Many of the major locomotor transitions during the evolution of Archosauria, the lineage including crocodiles and birds as well as extinct Dinosauria, were shifts from quadrupedalism to bipedalism (and vice versa). Those occurred within a continuum between more sprawling and erect modes of locomotion and involved drastic changes of limb anatomy and function in several lineages, including sauropodomorph dinosaurs. We present biomechanical computer models of two locomotor extremes within Archosauria in an analysis of joint ranges of motion and the moment arms of the major forelimb muscles in order to quantify biomechanical differences between more sprawling, pseudosuchian (represented the crocodile Crocodylus johnstoni) and more erect, dinosaurian (represented by the sauropodomorph Mussaurus patagonicus) modes of forelimb function. We compare these two locomotor extremes in terms of the reconstructed musculoskeletal anatomy, ranges of motion of the forelimb joints and the moment arm patterns of muscles across those ranges of joint motion. We reconstructed the three-dimensional paths of 30 muscles acting around the shoulder, elbow and wrist joints. We explicitly evaluate how forelimb joint mobility and muscle actions may have changed with postural and anatomical alterations from basal archosaurs to early sauropodomorphs. We thus evaluate in which ways forelimb posture was correlated with muscle leverage, and how such differences fit into a broader evolutionary context (i.e. transition from sprawling quadrupedalism to erect bipedalism and then shifting to graviportal quadrupedalism). Our analysis reveals major differences of muscle actions between the more sprawling and erect models at the shoulder joint. These differences are related not only to the articular surfaces but also to the orientation of the scapula, in which extension/flexion movements in Crocodylus (e.g. protraction of the humerus) correspond to elevation/depression in Mussaurus. Muscle action is highly influenced by limb posture, more so than morphology. Habitual quadrupedalism in Mussaurus is not supported by our analysis of joint range of motion, which indicates that glenohumeral protraction was severely restricted. Additionally, some active pronation of the manus may have been possible in Mussaurus, allowing semi-pronation by a rearranging of the whole antebrachium (not the radius against the ulna, as previously thought) via long-axis rotation at the elbow joint. However, the muscles acting around this joint to actively pronate it may have been too weak to drive or maintain such orientations as opposed to a neutral position in between pronation and supination. Regardless, the origin of quadrupedalism in Sauropoda is not only linked to manus pronation but also to multiple shifts of forelimb morphology, allowing greater flexion movements of the glenohumeral joint and a more columnar forelimb posture
Coherence properties of the two-dimensional Bose-Einstein condensate
We present a detailed finite-temperature Hartree-Fock-Bogoliubov (HFB)
treatment of the two-dimensional trapped Bose gas. We highlight the numerical
methods required to obtain solutions to the HFB equations within the Popov
approximation, the derivation of which we outline. This method has previously
been applied successfully to the three-dimensional case and we focus on the
unique features of the system which are due to its reduced dimensionality.
These can be found in the spectrum of low-lying excitations and in the
coherence properties. We calculate the Bragg response and the coherence length
within the condensate in analogy with experiments performed in the
quasi-one-dimensional regime [Richard et al., Phys. Rev. Lett. 91, 010405
(2003)] and compare to results calculated for the one-dimensional case. We then
make predictions for the experimental observation of the quasicondensate phase
via Bragg spectroscopy in the quasi-two-dimensional regime.Comment: 9 pages, 9 figure
Regional variation in digital cushion pressure in the forefeet of horses and elephants
In this study, we seek to understand how the digital cushion morphologies evident in horse and elephant feet influence internal and external foot pressures. Our novel use of invasive blood pressure monitoring equipment, combined with a pressure pad and force plate, enabled measurements of (ex vivo) digital cushion pressure under increasing axial loads in seven horse and six elephant forefeet. Linear mixed effects models (LMER) revealed that internal digital cushion pressures increase under load and differ depending on region; elephant feet experienced higher magnitudes of medial digital cushion pressure, whereas horse feet experienced higher magnitudes of centralised digital cushion pressure. Direct comparison of digital cushion pressure magnitudes in both species, at equivalent loads relative to body weight, revealed that medial and lateral pressures increased more rapidly with load in elephant limbs. Within the same approximate region, internal pressures exceeded external, palmar pressures (on the sole of the foot), supporting previous Finite Element (FE) predictions. High pressures and large variations in pressure may relate to the development of foot pathology, which is a major concern in horses and elephants in a captive/domestic environment
Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions
We present a study of the effects of temperature upon the excitation
frequencies of a Bose-Einstein condensate formed within a dilute gas with a
weak attractive effective interaction between the atoms. We use the
self-consistent Hartree-Fock Bogoliubov treatment within the Popov
approximation and compare our results to previous zero temperature and
Hartree-Fock calculations The metastability of the condensate is monitored by
means of the excitation frequency. As the number of atoms in the
condensate is increased, with held constant, this frequency goes to zero,
signalling a phase transition to a dense collapsed state. The critical number
for collapse is found to decrease as a function of temperature, the rate of
decrease being greater than that obtained in previous Hartree-Fock
calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.
Coating thermal noise of a finite-size cylindrical mirror
Thermal noise of a mirror is one of the limiting noise sources in the high
precision measurement such as gravitational-wave detection, and the modeling of
thermal noise has been developed and refined over a decade. In this paper, we
present a derivation of coating thermal noise of a finite-size cylindrical
mirror based on the fluctuation-dissipation theorem. The result agrees to a
previous result with an infinite-size mirror in the limit of large thickness,
and also agrees to an independent result based on the mode expansion with a
thin-mirror approximation. Our study will play an important role not only to
accurately estimate the thermal-noise level of gravitational-wave detectors but
also to help analyzing thermal noise in quantum-measurement experiments with
lighter mirrors.Comment: 13 pages, 4 figure
- …