1,124 research outputs found

    Emergent SU(3) symmetry in random spin-1 chains

    Get PDF
    We show that generic SU(2)-invariant random spin-1 chains have phases with an emergent SU(3) symmetry. We map out the full zero-temperature phase diagram and identify two different phases: (i) a conventional random singlet phase (RSP) of strongly bound spin pairs (SU(3) "mesons") and (ii) an unconventional RSP of bound SU(3) "baryons", which are formed, in the great majority, by spin trios located at random positions. The emergent SU(3) symmetry dictates that susceptibilities and correlation functions of both dipolar and quadrupolar spin operators have the same asymptotic behavior.Comment: 5 pages plus 3-page Supplemental Material, 5 figures; published versio

    Software Design with the Rapid Prototyping Approach

    Get PDF

    Emergent SU(N) symmetry in disordered SO(N) spin chains

    Full text link
    Strongly disordered spin chains invariant under the SO(N) group are shown to display random-singlet phases with emergent SU(N) symmetry without fine tuning. The phases with emergent SU(N) symmetry are of two kinds: one has a ground state formed of randomly distributed singlets of strongly bound pairs of SO(N) spins (a `mesonic' phase), while the other has a ground state composed of singlets made out of strongly bound integer multiples of N SO(N) spins (a `baryonic' phase). The established mechanism is general and we put forward the cases of N=2,3,4\mathrm{N}=2,3,4 and 66 as prime candidates for experimental realizations in material compounds and cold-atoms systems. We display universal temperature scaling and critical exponents for susceptibilities distinguishing these phases and characterizing the enlarging of the microscopic symmetries at low energies.Comment: 5 pages, 2 figures, Contribution to the Topical Issue "Recent Advances in the Theory of Disordered Systems", edited by Ferenc Igl\'oi and Heiko Riege

    Highly-symmetric random one-dimensional spin models

    Get PDF
    The interplay of disorder and interactions is a challenging topic of condensed matter physics, where correlations are crucial and exotic phases develop. In one spatial dimension, a particularly successful method to analyze such problems is the strong-disorder renormalization group (SDRG). This method, which is asymptotically exact in the limit of large disorder, has been successfully employed in the study of several phases of random magnetic chains. Here we develop an SDRG scheme capable to provide in-depth information on a large class of strongly disordered one-dimensional magnetic chains with a global invariance under a generic continuous group. Our methodology can be applied to any Lie-algebra valued spin Hamiltonian, in any representation. As examples, we focus on the physically relevant cases of SO(N) and Sp(N) magnetism, showing the existence of different randomness-dominated phases. These phases display emergent SU(N) symmetry at low energies and fall in two distinct classes, with meson-like or baryon-like characteristics. Our methodology is here explained in detail and helps to shed light on a general mechanism for symmetry emergence in disordered systems.Comment: 26 pages, 12 figure

    Multi-Fluid Simulation of the Magnetic Field Evolution in Neutron Stars

    Full text link
    Using a numerical simulation, we study the effects of ambipolar diffusion and ohmic diffusion on the magnetic field evolution in the interior of an isolated neutron star. We are interested in the behavior of the magnetic field on a long time scale, over which all Alfven and sound waves have been damped. We model the stellar interior as an electrically neutral plasma composed of neutrons, protons and electrons, which can interact with each other through collisions and electromagnetic forces. Weak interactions convert neutrons and charged particles into each other, erasing chemical imbalances. As a first step, we assume that the magnetic field points in one fixed Cartesian direction but can vary along an orthogonal direction. We start with a uniform-density background threaded by a homogeneous magnetic field and study the evolution of a magnetic perturbation as well as the density fluctuations it induces in the particles. We show that the system evolves through different quasi-equilibrium states and estimate the characteristic time scales on which these quasi-equilibria occur.Comment: It will be published in AIP Proceedings of the Conference '40 Years of Pulsars: Milisecond Pulsars, Magnetars and More' held at University of McGill, Montreal, Canada, August 2007. Contributed Talk at Conference '40 Years of Pulsars: Milisecond Pulsars, Magnetars and More

    Valence-bond theory of highly disordered quantum antiferromagnets

    Get PDF
    We present a large-N variational approach to describe the magnetism of insulating doped semiconductors based on a disorder-generalization of the resonating-valence-bond theory for quantum antiferromagnets. This method captures all the qualitative and even quantitative predictions of the strong-disorder renormalization group approach over the entire experimentally relevant temperature range. Finally, by mapping the problem on a hard-sphere fluid, we could provide an essentially exact analytic solution without any adjustable parameters.Comment: 5 pages, 3 eps figure

    Measurement of low frequency mechanical vibrations based on an inverted magnetic pendulum

    Get PDF
    In this paper is presented the mathematical model, design and construction of a prototype of a  vibration frequency meter in an adjustable range of 2 Hz to 30 Hz; The experimental results and their analysis are also presented, making a comparative evaluation with the theoretical model. The device is based on the principle of resonance applied in an inverted magnetic pendulum whose natural frequency can be modified by variations of physical parameters. The oscillation of the pendulum is recorded detecting variations in the magnetic field using hall effect sensors; the data recorded with a microprocessor is analyzed and the results are simultaneously plotted in a computer interface. The data obtained were processed to be plotted in the frequency domain, facilitating its analysis. It was proved that the prototype can be used as a frequency meter and that the adjustable character of the device works according to the mathematical model. Finally, The effect of the friction force was studied, it was concluded that the friction force affects the measurement after a considerable period of time of oscillation, but not in the first moments
    • …
    corecore