136 research outputs found

    Microbial ecology of retail ready-to-eat escarole and red chicory sold in Palermo City, Italy

    Get PDF
    Background: Ready-To-Eat (RTE) foods include any edible food that is commonly consumed raw. This study aimed at evaluation of microbial ecology of retail RTE escarole and red chicory sold in Palermo city, Italy. Methods: A total of 32 mono-varietal RTE samples, including escarole (n=16) and red chicory (n=16) samples were obtained from Palermo, Italy. Both RTE vegetables at expiry date were analyzed to quantify spoilage bacteria, pathogenic bacteria, and yeast. All different colonies were isolated and identified on the basis of phenotypic characteristics and genetic polymorphisms by random amplification of polymorphic DNA-Polymerase Chain Reaction (PCR) and further genotype by sequencing the 16S rRNA gene. The statistical analysis was conducted with SAS 9.2 software (Statistical Analysis System Institute Inc., Cary, NC, USA). Results: The level of Listeria monocytogenes and coagulase-positive staphylococci were below the detection. Total microbial counts were above 8 log10 colony forming unit/g in RTE red chicory, while they were about 1 log cycle lower in escarole. In general, escarole showed lower levels for all microbial groups than red chicory with the exception of the total yeast. A total of 13 strains were identified into ten species belonging to six genera as Bacillus, Erwinia, Pantoea, Pseudomonas, Microbacterium, and Rahnella. The most numerous identified genera were Pseudomonas and Pantoea. Conclusion: This work pointed out the relevance of implementing good hygiene practices during processing in order to prolong quality parameters and acceptability of mono-varietal salads

    Photoevaporation and close encounters: how the environment around Cygnus OB2 affects the evolution of protoplanetary disks

    Full text link
    In our Galaxy, star formation occurs in a variety of environments, with a large fraction of stars formed in clusters hosting massive stars. OB stars have an important feedback on the evolution of protoplanetary disks around nearby young stars and likely on the process of planet formation occurring in them. The nearby massive association Cygnus OB2 is an outstanding laboratory to study this feedback. It is the closest massive association to our Sun, and hosts hundreds of massive stars and thousands of low mass members. In this paper, we analyze the spatial variation of the disk fraction in Cygnus OB2 and we study its correlation with the local values of Far and Extreme ultraviolet radiation fields and the local stellar surface density. We present definitive evidence that disks are more rapidly dissipated in the regions of the association characterized by intense local UV field and large stellar density. In particular, the FUV radiation dominates disks dissipation timescales in the proximity (i.e. within 0.5 pc) of the O stars. In the rest of the association, EUV photons potentially induce a significant mass loss from the irradiated disks across the entire association, but the efficiency of this process is reduced at increasing distances from the massive stars due to absorption by the intervening intracluster material. We find that disk dissipation due to close stellar encounters is negligible in Cygnus OB2, and likely to have affected 1% or fewer of the stellar population. Disk dissipation is instead dominated by photoevaporation. We also compare our results to what has been found in other young clusters with different massive populations, concluding that massive associations like Cygnus OB2 are potentially hostile to protoplanetary disks, but that the environments where disks can safely evolve in planetary systems are likely quite common in our Galaxy.Comment: Accepted for publication in ApJS as part of the special issue on the Chandra Cygnus OB2 Legacy Projec

    Optical photometric GTC/OSIRIS observations of the young massive association Cygnus OB2

    Get PDF
    In order to fully understand the gravitational collapse of molecular clouds, the star formation process and the evolution of circumstellar disks, these phenomena must be studied in different Galactic environments with a range of stellar contents and positions in the Galaxy. The young massive association Cygnus OB2, in the Cygnus-X region, is an unique target to study how star formation and the evolution of circumstellar disks proceed in the presence of a large number of massive stars. We present a catalog obtained with recent optical observations in r,i,z filters with OSIRIS, mounted on the 10.4m10.4\,m GTC telescope, which is the deepest optical catalog of Cyg OB2 to date. The catalog consist of 64157 sources down to M=0.15 solar masses at the adopted distance and age of Cyg OB2. A total of 38300 sources have good photometry in all three bands. We combined the optical catalog with existing X-ray data of this region, in order to define the cluster locus in the optical diagrams. The cluster locus in the r-i vs. i-z diagram is compatible with an extinction of the optically selected cluster members in the 2.64<AV<5.57 range. We derive an extinction map of the region, finding a median value of AV=4.33 in the center of the association, decreasing toward the north-west. In the color-magnitude diagrams, the shape of the distribution of main sequence stars is compatible with the presence of an obscuring cloud in the foreground at about 850+/-25 pc from the Sun.Comment: Accepted for publication ApJS 201

    First passage and first hitting times of Lévy flights and Lévy walks

    Get PDF
    Abstract For both Lévy flight and Lévy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For Lévy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it (‘leapovers’), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the Lévy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms

    Globules and pillars in Cygnus X. I. <i>Herschel</i> far-infrared imaging of the Cygnus OB2 environment

    Get PDF
    The radiative feedback of massive stars on molecular clouds creates pillars, globules and other features at the interface between the H II region and molecular cloud. Optical and near-infrared observations from the ground as well as with the Hubble or Spitzer satellites have revealed numerous examples of such cloud structures. We present here Herschel far-infrared observations between 70 μm and 500 μm of the immediate environment of the rich Cygnus OB2 association, performed within the Herschel imaging survey of OB Young Stellar objects (HOBYS) program. All of the observed irradiated structures were detected based on their appearance at 70 μm, and have been classified as pillars, globules, evaporating gasous globules (EGGs), proplyd-like objects, and condensations. From the 70 μm and 160 μm flux maps, we derive the local far-ultraviolet (FUV) field on the photon dominated surfaces. In parallel, we use a census of the O-stars to estimate the overall FUV-field, that is 103-104 G0 (Habing field) close to the central OB cluster (within 10 pc) and decreases down to a few tens G0, in a distance of 50 pc. From a spectral energy distribution (SED) fit to the four longest Herschel wavelengths, we determine column density and temperature maps and derive masses, volume densities and surface densities for these structures. We find that the morphological classification corresponds to distinct physical properties. Pillars and globules are massive (~500 M⊙) and large (equivalent radius r ~ 0.6 pc) structures, corresponding to what is defined as "clumps" for molecular clouds. EGGs and proplyd-likeobjects are smaller (r ~ 0.1 and 0.2 pc) and less massive (~10 and ~30 M⊙). Cloud condensations are small (~0.1 pc), have an average mass of 35 M⊙, are dense (~6 × 104 cm-3), and can thus be described as molecular cloud "cores". All pillars and globules are oriented toward the Cyg OB2 association center and have the longest estimated photoevaporation lifetimes, a few million years, while all other features should survive less than a million years. These lifetimes are consistent with that found in simulations of turbulent, UV-illuminated clouds. We propose a tentative evolutionary scheme in which pillars can evolve into globules, which in turn then evolve into EGGs, condensations and proplyd-like objects

    Optical and Infrared Counterparts of the X-Ray Sources Detected in the Chandra Cygnus OB2 Legacy Survey

    Get PDF
    The young massive OB association Cygnus OB2, in the Cygnus X complex, is the closest (∼1400 pc) star-forming region to the Sun hosting thousands of young low-mass stars and up to 1000 OB stars, among which are some of the most massive stars known in our Galaxy. This region holds great importance for several fields of modern astrophysics, such as the study of the physical properties of massive and young low-mass stars and the feedback provided by massive stars on star and planet formation processes. Cyg OB2 has been recently observed with Chandra/ACIS-I as part of the 1.08 Ms Chandra Cygnus OB2 Legacy Project. This survey detected 7924 X-ray sources in a square degree area centered on Cyg OB2. Since a proper classification and study of the observed X-ray sources also requires the analysis of their optical and infrared counterparts, we combined a large and deep set of optical and infrared catalogs available for this region with our new X-ray catalog. In this paper we describe the matching procedure and present the combined catalog containing 5703 sources. We also briefly discuss the nature of the X-ray sources with optical and infrared counterparts using their position in the color–magnitude and color–color diagrams
    corecore