618 research outputs found
Mitigation Solutions for the Magnetic Field Produced by MFDC Spot Welding Guns
Among the different welding technologies, portable welding guns are one of the most critical devices in relation to human exposure to electromagnetic fields. This paper focuses on medium frequency (MF) direct current guns proposing two actions aimed to the mitigation of the magnetic field generated during the welding process. The first action consists in the adoption of a passive shield for the on-board MF transformer. The analysis points out that the transformer alone produces a magnetic field that can exceed the prescribed limits. Therefore, a suitable mitigation system is identified. The second action aims to mitigate the predominant magnetic field that is generated by the electrodes of the welding gun. The analysis of the field waveforms shows that the rise time of the welding current pulse is the main parameter affecting the exposure index. The effect of the increase of the rise time is investigated through experimental and numerical analyses. The results prove that a small increase of the rise time causes a significant reduction of the exposure level. It is noteworthy that the two mitigation actions can be adopted on both existing and newly developed welding guns as they do not require any structural modification of the welding device
Influence of posture and coil position on the safety of a WPT system while recharging a compact EV
In this study, the human exposure to the magnetic field emitted by a wireless power transfer (WPT) system during the static recharging operations of a compact electric vehicle (EV) is evaluated. Specifically, the influence of the posture of realistic anatomical models, both in standing and lying positions, either inside or outside the EV, is considered. Aligned and misaligned coil configurations of the WPT system placed both in the rear and front position of the car floor are considered as well. Compliance with safety standards and guidelines has proven that reference levels are exceeded in the extreme case of a person lying on the floor with a hand close to the WPT coils, whereas the system is always compliant with the basic restrictions, at least for the considered scenarios
Chassis influence on the exposure assessment of a compact ev during wpt recharging operations
In this study, the external magnetic field emitted by a wireless power transfer (WPT) system and the internal electric field induced in human body models during recharging operations of a compact electric vehicle (EV) are evaluated. The magneticfield is calculated with a hybrid scheme coupling the boundary element method with the surface impedance boundary conditions in order to fit the multiscale open-boundary characteristics of the problem. A commercial software is then used to perform numerical dosimetry. Specifically, two realistic anatomical models, both in a driving position and in a standing posture, are considered, and the chassis of the EV is modeled either as a currently employed aluminum alloy and as a futuristic carbon fiber composite panel. Aligned and misaligned coil configurations of the WPT system are considered as well. The analysis of the obtained results shows that the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels are exceeded in the driving position, especially for the carbon fiber chassis, whereas the system is compliant with the basic restrictions, at least for the considered scenarios
Phenotypic and genetic analysis of udder health using SCC in Valle del Belice dairy sheep
Intramammary infections (IMI) are a complex of inflammatory diseases which are defined as an inflammation of the mammary gland resulting from the introduction and multiplication of pathogenic micro-organisms
Enzymatic characterization of Vibrio alginolyticus strains isolated from bivalves harvested at Venice Lagoon (Italy) and Guanabara Bay (Brazil)
The aquatic ecosystem is the natural habitat of microorganisms including Vibrio and Aeromonas genus which are pathogenic to human and animals. In the present investigation the frequency of these bacteria and the enzymatic characteristics of 34 Vibrio alginolyticus strains isolated from bivalves harvested in Venice Lagoon (Italy) and Guanabara Bay (Brazil) were carried out from November 2003 to February 2004. The mussels' samples were submitted to enrichment in Alkaline Peptone Water (APW) added with 1% of sodium chloride (NaCl) and APW plus 3% NaCl incubated at 37 ÂșC for 18-24h. Following the samples were streaked onto TCBS Agar (Thiossulfate Citrate Bile Sucrose Agar) and the suspected colonies were submitted to biochemical characterization. Also, the Vibrio alginolyticus strains were evaluated to collagenase, elastase and chondroitinase production. The results showed the isolation of 127 microorganisms distributed as follows: 105 Vibrio strains such as V. alginolyticus (32.4%), V. harveyi (19%) and V. parahaemolyticus (7.6%), 20 Aeromonas strains and two Plesiomonas shigelloides were the main pathogens isolated. We observed the production of the three enzymes from V. alginolyticus strains considered as the main virulence factors of the bacteria, especially in cases of human dermatological infection
Prediction of outcome of non-small cell lung cancer patients treated with chemotherapy and bortezomib by time-course MALDI-TOF-MS serum peptide profiling
Background: Only a minority of patients with advanced non-small cell lung cancer (NSCLC) benefit from chemotherapy. Serum peptide profiling of NSCLC patients was performed to investigate patterns associated with treatment outcome. Using magnetic bead-assisted serum peptide capture coupled to matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (MALDI-TOF-MS), serum peptide mass profiles of 27 NSCLC patients treated with cisplatin-gemcitabine chemotherapy and bortezomib were obtained. Support vector machine-based algorithms to predict clinical outcome were established based on differential pre-treatment peptide profiles and dynamic changes in peptide abundance during treatment. Results: A 6-peptide ion signature distinguished with 82% accuracy, sensitivity and specificity patients with a relatively short vs. long progression-free survival (PFS) upon treatment. Prediction of long PFS was associated with longer overall survival. Inclusion of 7 peptide ions showing differential changes in abundance during treatment led to a 13-peptide ion signature with 86% accuracy at 100% sensitivity and 73% specificity. A 5-peptide ion signature could separate patients with a partial response vs. non-responders with 89% accuracy at 100% sensitivity and 83% specificity. Differential peptide profiles were also found when comparing the NSCLC serum profiles to those from cancer-free control subjects. Conclusion: This study shows that serum peptidome profiling using MALDI-TOF-MS coupled to pattern diagnostics may aid in prediction of treatment outcome of advanced NSCLC patients treated with chemotherap
- âŠ