506 research outputs found
Triplet-singlet conversion in ultracold Cs and production of ground state molecules
We propose a process to convert ultracold metastable Cs molecules in
their lowest triplet state into (singlet) ground state molecules in their
lowest vibrational levels. Molecules are first pumped into an excited triplet
state, and the triplet-singlet conversion is facilitated by a two-step
spontaneous decay through the coupled
states. Using spectroscopic data and accurate quantum chemistry calculations
for Cs potential curves and transition dipole moments, we show that this
process has a high rate and competes favorably with the single-photon decay
back to the lowest triplet state. In addition, we demonstrate that this
conversion process represents a loss channel for vibrational cooling of
metastable triplet molecules, preventing an efficient optical pumping cycle
down to low vibrational levels
Observation of enhanced rate coefficients in the H + H H + H reaction at low collision energies
The energy dependence of the rate coefficient of the H reaction has been measured in the range of
collision energies between K and
mK. A clear deviation of the rate coefficient from the value expected on the
basis of the classical Langevin-capture behavior has been observed at collision
energies below K, which is attributed to the joint
effects of the ion-quadrupole and Coriolis interactions in collisions involving
ortho-H molecules in the rotational level, which make up 75% of the
population of the neutral H molecules in the experiments. The experimental
results are compared to very recent predictions by Dashevskaya, Litvin, Nikitin
and Troe (J. Chem. Phys., in press), with which they are in agreement.Comment: 14 pages, 3 figure
Matter-wave interference and deflection of tripeptides decorated with fluorinated alkyl chains
Studies of neutral biomolecules in the gas phase allow for the study of molecular properties in the absence of solvent and charge effects, thus complementing spectroscopic and analytical methods in solution or in ion traps. Some properties, such as the static electronic susceptibility, are best accessed in experiments that act on the motion of the neutral molecules in an electric field. Here, we screen seven peptides for their thermal stability and electron impact ionizability. We identify two tripeptides as sufficiently volatile and thermostable to be evaporated and interfered in the longâbaseline universal matterâwave interferometer. Monitoring the deflection of the interferometric molecular nanopattern in a tailored external electric field allows us to measure the static molecular susceptibility of AlaâTrpâAla and AlaâAlaâTrp bearing fluorinated alkyl chains at Câ and Nâtermini
Blackbody-radiation-assisted molecular laser cooling
The translational motion of molecular ions can be effectively cooled
sympathetically to temperatures below 100 mK in ion traps through Coulomb
interactions with laser-cooled atomic ions. The distribution of internal
rovibrational states, however, gets in thermal equilibrium with the typically
much higher temperature of the environment within tens of seconds. We consider
a concept for rotational cooling of such internally hot, but translationally
cold heteronuclear diatomic molecular ions. The scheme relies on a combination
of optical pumping from a few specific rotational levels into a ``dark state''
with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure
Hypophosphorylated SR splicing factors transiently localize around active nucleolar organizing regions in telophase daughter nuclei
Upon completion of mitosis, daughter nuclei assemble all of the organelles necessary for the implementation of nuclear functions. We found that upon entry into daughter nuclei, snRNPs and SR proteins do not immediately colocalize in nuclear speckles. SR proteins accumulated in patches around active nucleolar organizing regions (NORs) that we refer to as NOR-associated patches (NAPs), whereas snRNPs were enriched at other nuclear regions. NAPs formed transiently, persisting for 15â20 min before dissipating as nuclear speckles began to form in G1. In the absence of RNA polymerase II transcription, NAPs increased in size and persisted for at least 2 h, with delayed localization of SR proteins to nuclear speckles. In addition, SR proteins in NAPs are hypophosphorylated, and the SR protein kinase Clk/STY colocalizes with SR proteins in NAPs, suggesting that phosphorylation releases SR proteins from NAPs and their initial target is transcription sites. This work demonstrates a previously unrecognized role of NAPs in splicing factor trafficking and nuclear speckle biogenesis
Modes of Oscillation in Radiofrequency Paul Traps
We examine the time-dependent dynamics of ion crystals in radiofrequency
traps. The problem of stable trapping of general three-dimensional crystals is
considered and the validity of the pseudopotential approximation is discussed.
We derive analytically the micromotion amplitude of the ions, rigorously
proving well-known experimental observations. We use a method of infinite
determinants to find the modes which diagonalize the linearized time-dependent
dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov')
transformation to coordinates of decoupled linear oscillators. We demonstrate
the utility of the method by analyzing the modes of a small `peculiar' crystal
in a linear Paul trap. The calculations can be readily generalized to
multispecies ion crystals in general multipole traps, and time-dependent
quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction
3D time series analysis of cell shape using Laplacian approaches
Background:
Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes.
Results:
We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells.
Conclusions:
The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations
Search for Doubly-Charged Higgs Boson Production at HERA
A search for the single production of doubly-charged Higgs bosons H^{\pm \pm}
in ep collisions is presented. The signal is searched for via the Higgs decays
into a high mass pair of same charge leptons, one of them being an electron.
The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment
at HERA. No evidence for doubly-charged Higgs production is observed and mass
dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs
boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only
decays into an electron and a muon via a coupling of electromagnetic strength
h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the
H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged
Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3,
masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl
- âŠ