8 research outputs found
Patients receiving a high burden of antibiotics in the community in Spain: a cross-sectional study
Some patients in the community receive a high burden of antibiotics. We aimed at describing the characteristics of these patients, antibiotics used, and conditions for which they received antibiotics. We carried out a cross-sectional study. Setting: Thirty Health Primary Care Areas from 12 regions in Spain, covering 5, 960, 191 inhabitants. Patients having at least 30 packages of antibacterials for systemic use dispensed in 2017 were considered. Main outcome measures: Prevalence of antibiotic use, conditions for which antibiotics were prescribed, clinical characteristics of patients, comorbidities, concomitant treatments, and microbiological isolates. Patient''s average age was 70 years; 52% were men; 60% smokers/ex-smokers; 54% obese. Overall, 93% of patients had, at least, one chronic condition, and four comorbidities on average. Most common comorbidities were cardiovascular and/or hypertension (67%), respiratory diseases (62%), neurological/mental conditions (32%), diabetes (23%), and urological diseases (21%); 29% were immunosuppressed, 10% were dead at the time of data collection. Patients received three antibiotic treatments per year, mainly fluoroquinolones (28%), macrolides (21%), penicillins (19%), or cephalosporins (12%). Most frequently treated conditions were lower respiratory tract (infections or prophylaxis) (48%), urinary (27%), and skin/soft tissue infections (11%). Thirty-five percent have been guided by a microbiological diagnosis, being Pseudomonas aeruginosa (30%) and Escherichia coli (16%) the most frequent isolates. In conclusion, high antibiotic consumers in the community were basically elder, with multimorbidity and polymedication. They frequently received broad-spectrum antibiotics for long periods of time. The approach to infections in high consumers should be differentiated from healthy patients receiving antibiotics occasionally
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset
Clinical and genetic characteristics of late-onset Huntington's disease
Background: The frequency of late-onset Huntington's disease (>59 years) is assumed to be low and the clinical course milder. However, previous literature on late-onset disease is scarce and inconclusive. Objective: Our aim is to study clinical characteristics of late-onset compared to common-onset HD patients in a large cohort of HD patients from the Registry database. Methods: Participants with late- and common-onset (30\u201350 years)were compared for first clinical symptoms, disease progression, CAG repeat size and family history. Participants with a missing CAG repeat size, a repeat size of 6435 or a UHDRS motor score of 645 were excluded. Results: Of 6007 eligible participants, 687 had late-onset (11.4%) and 3216 (53.5%) common-onset HD. Late-onset (n = 577) had significantly more gait and balance problems as first symptom compared to common-onset (n = 2408) (P <.001). Overall motor and cognitive performance (P <.001) were worse, however only disease motor progression was slower (coefficient, 120.58; SE 0.16; P <.001) compared to the common-onset group. Repeat size was significantly lower in the late-onset (n = 40.8; SD 1.6) compared to common-onset (n = 44.4; SD 2.8) (P <.001). Fewer late-onset patients (n = 451) had a positive family history compared to common-onset (n = 2940) (P <.001). Conclusions: Late-onset patients present more frequently with gait and balance problems as first symptom, and disease progression is not milder compared to common-onset HD patients apart from motor progression. The family history is likely to be negative, which might make diagnosing HD more difficult in this population. However, the balance and gait problems might be helpful in diagnosing HD in elderly patients
Recommended from our members
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Gliomas are the most common primary brain malignancies, with different
degrees of aggressiveness, variable prognosis and various heterogeneous
histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic
core, active and non-enhancing core. This intrinsic heterogeneity is also
portrayed in their radio-phenotype, as their sub-regions are depicted by
varying intensity profiles disseminated across multi-parametric magnetic
resonance imaging (mpMRI) scans, reflecting varying biological properties.
Their heterogeneous shape, extent, and location are some of the factors that
make these tumors difficult to resect, and in some cases inoperable. The amount
of resected tumor is a factor also considered in longitudinal scans, when
evaluating the apparent tumor for potential diagnosis of progression.
Furthermore, there is mounting evidence that accurate segmentation of the
various tumor sub-regions can offer the basis for quantitative image analysis
towards prediction of patient overall survival. This study assesses the
state-of-the-art machine learning (ML) methods used for brain tumor image
analysis in mpMRI scans, during the last seven instances of the International
Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we
focus on i) evaluating segmentations of the various glioma sub-regions in
pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue
of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO
criteria, and iii) predicting the overall survival from pre-operative mpMRI
scans of patients that underwent gross total resection. Finally, we investigate
the challenge of identifying the best ML algorithms for each of these tasks,
considering that apart from being diverse on each instance of the challenge,
the multi-institutional mpMRI BraTS dataset has also been a continuously
evolving/growing dataset
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Gliomas are the most common primary brain malignancies, with different
degrees of aggressiveness, variable prognosis and various heterogeneous
histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic
core, active and non-enhancing core. This intrinsic heterogeneity is also
portrayed in their radio-phenotype, as their sub-regions are depicted by
varying intensity profiles disseminated across multi-parametric magnetic
resonance imaging (mpMRI) scans, reflecting varying biological properties.
Their heterogeneous shape, extent, and location are some of the factors that
make these tumors difficult to resect, and in some cases inoperable. The amount
of resected tumor is a factor also considered in longitudinal scans, when
evaluating the apparent tumor for potential diagnosis of progression.
Furthermore, there is mounting evidence that accurate segmentation of the
various tumor sub-regions can offer the basis for quantitative image analysis
towards prediction of patient overall survival. This study assesses the
state-of-the-art machine learning (ML) methods used for brain tumor image
analysis in mpMRI scans, during the last seven instances of the International
Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we
focus on i) evaluating segmentations of the various glioma sub-regions in
pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue
of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO
criteria, and iii) predicting the overall survival from pre-operative mpMRI
scans of patients that underwent gross total resection. Finally, we investigate
the challenge of identifying the best ML algorithms for each of these tasks,
considering that apart from being diverse on each instance of the challenge,
the multi-institutional mpMRI BraTS dataset has also been a continuously
evolving/growing dataset