5,316 research outputs found
Mediators of mechanotransduction between bone cells
Mechanical forces are known to regulate the function of tissues in the body, including bone. Bone adapts to its mechanical environment by altering its shape and increasing its size in response to increases in mechanical load associated with exercise, and by decreasing its size in response to decreases in mechanical load associated with microgravity or prolonged bed rest. Changes in bone size and shape are produced by a cooperative action of two main types of the bone cells - osteoclasts that destroy bone and osteoblasts that build bone. These cell types come from different developmental origins, and vary greatly in their characteristics, such as size, shape, and expression of receptor subtypes, which potentially may affect their responses to mechanical stimuli. The objective of this study is to compare the responses of osteoclasts and osteoblasts to mechanical stimulation.
This study has allowed us to conclude the following:
1. A mediator is released from a single source cell.
2. The response to the mediator changes with distance.
3. The value of the apparent diffusion coeficient increases with distance.
4. A plausible proposed mechanism is that ATP is released and degrades to ADP.
5. Future experiments are required to confim that ATP is the mediator as suggested
Biodiversity and ecosystem function in soil
1. Soils are one of the last great frontiers for biodiversity research and are home to an extraordinary range of microbial and animal groups. Biological activities in soils drive many of the key ecosystem processes that govern the global system, especially in the cycling of elements such as carbon, nitrogen and phosphorus. 2. We cannot currently make firm statements about the scale of biodiversity in soils, or about the roles played by soil organisms in the transformations of organic materials that underlie those cycles. The recent UK Soil Biodiversity Programme (SBP) has brought a unique concentration of researchers to bear on a single soil in Scotland, and has generated a large amount of data concerning biodiversity, carbon flux and resilience in the soil ecosystem. 3. One of the key discoveries of the SBP was the extreme diversity of small organisms: researchers in the programme identified over 100 species of bacteria, 350 protozoa, 140 nematodes and 24 distinct types of arbuscular mycorrhizal fungi. Statistical analysis of these results suggests a much greater 'hidden diversity'. In contrast, there was no unusual richness in other organisms, such as higher fungi, mites, collembola and annelids. 4. Stable-isotope (C-13) technology was used to measure carbon fluxes and map the path of carbon through the food web. A novel finding was the rapidity with which carbon moves through the soil biota, revealing an extraordinarily dynamic soil ecosystem. 5. The combination of taxonomic diversity and rapid carbon flux makes the soil ecosystem highly resistant to perturbation through either changing soil structure or removing selected groups of organisms
Elastic Wave Scattering from Multiple and Odd Shaped Flaws
Using the T-Matrix or Null Field method elastic wave scattering from the following geometries have been studied (a) Rotationally symmetric configurations consisting of two spheroidal cavities separated by a finite distance and with different eccentricities. Exact calculations are compared with single scattering approximations. The frequency spectra are interpreted for various scattering geometries and compared with experiments. The effect of change in distance between the scatterers is also discussed. (b) Scattering from rotationally symmetric cavities with odd shapes like Pinnochio , Rockwell Science Center sample #73 and Micky Mouse , Rockwell Science Center sample #70 was also studied and compared with numerical results using other techniques as well as experiments. Several ways of studying such problems is also discussed. (c) A numerical technique is proposed to study dynamic stress concentrations
Structure Function of Polymer Nematic Liquid Crystals: A Monte Carlo Simulation
We present a Monte Carlo simulation of a polymer nematic for varying volume
fractions, concentrating on the structure function of the sample. We achieve
nematic ordering with stiff polymers made of spherical monomers that would
otherwise not form a nematic state. Our results are in good qualitative
agreement with theoretical and experimental predictions, most notably the
bowtie pattern in the static structure function.Comment: 10 pages, plain TeX, macros included, 3 figures available from
archive. Published versio
A reliable Pade analytical continuation method based on a high accuracy symbolic computation algorithm
We critique a Pade analytic continuation method whereby a rational polynomial
function is fit to a set of input points by means of a single matrix inversion.
This procedure is accomplished to an extremely high accuracy using a novel
symbolic computation algorithm. As an example of this method in action we apply
it to the problem of determining the spectral function of a one-particle
thermal Green's function known only at a finite number of Matsubara frequencies
with two example self energies drawn from the T-matrix theory of the Hubbard
model. We present a systematic analysis of the effects of error in the input
points on the analytic continuation, and this leads us to propose a procedure
to test quantitatively the reliability of the resulting continuation, thus
eliminating the black magic label frequently attached to this procedure.Comment: 11 pages, 8 eps figs, revtex format; revised version includes
reference to anonymous ftp site containing example codes (MapleVr5.1
worksheets) displaying the implementation of the algorithm, including the
padematinv.m library packag
Impact of load dynamics on torsional interactions
This paper evaluates the impact of load dynamics on torsional interactions by considering a mix of static and dynamic loads aggregated at the bulk transmission level. This is essential to investigate the importance of detailed load modelling for subsynchronous resonance (SSR) studies to accurately assess damping contribution and capture system dynamics. SSR interaction with dynamic loads is investigated for both direct on line and drive connected motor loads. Damping contribution from dynamic loads is also assessed based on their location and size. The interaction of dynamic loads with classical SSR phenomenon is observed and introduced as the new concept of (Subsynchronous Resonance Load Interactions (SSR-LI)). SSRLI assumes critical importance for scenarios where the load and generation centers are in close electrical proximity and impact of loads on torsional damping is significant. Finally, the scope for using existing converter interfaced motors for torsional mode damping has been discussed
Salmonella Pathogenesis and Processing of Secreted Effectors by Caspase-3
The enteric pathogen Salmonella enterica serovar Typhimurium causes food poisoning resulting in gastroenteritis. The S. Typhimurium effector Salmonella invasion protein A (SipA) promotes gastroenteritis by functional motifs that trigger either mechanisms of inflammation or bacterial entry. During infection of intestinal epithelial cells, SipA was found to be responsible for the early activation of caspase-3, an enzyme that is required for SipA cleavage at a specific recognition motif that divided the protein into its two functional domains and activated SipA in a manner necessary for pathogenicity. Other caspase-3 cleavage sites identified in S. Typhimurium appeared to be restricted to secreted effector proteins, which indicates that this may be a general strategy used by this pathogen for processing of its secreted effectors
- …