106 research outputs found

    Towards elimination of measles and rubella in Italy. Progress and challenges

    Get PDF
    Introduction In the WHO European Region, endemic transmission of measles and rubella had been interrupted by 37 and 42 of the 53 member states (MSs), respectively, by 2018. Sixteen MSs are still endemic for measles, 11 for rubella and nine for both diseases, the latter including Italy. Elimination is documented by each country’s National Verification Committee (NVC) through an annual status update (ASU). Objective By analysing data used to produce the ASUs, we aimed to describe the advances made by Italy towards elimination of measles and rubella. Moreover, we propose a set of major interventions that could facilitate the elimination process. Methods A total of 28 indicators were identified within the six core sections of the ASU form and these were evaluated for the period 2013–2018. These indicators relate to the incidence of measles/rubella; epidemiological investigation of cases; investigation of outbreaks; performance of the surveillance system; population immunity levels; and implementation of supplemental immunization activities (SIAs). Results From 2013 to 2018, epidemiological and laboratory analyses of measles cases in Italy improved substantially, allowing timely investigation in 2017 and 2018 of most outbreak and sporadic cases and identification of the majority of genotypic variants. Moreover, since 2017, vaccination coverage has increased significantly. Despite these improvements, several areas of concern emerged, prompting the following recommendations: i) improve outbreak monitoring; ii) strengthen the MoRoNet network; iii) increase the number of SIAs; iv) reinforce vaccination services; v) maintain regional monitoring; vi) design effective communication strategies; vii) foster the role of general practitioners and family paediatricians. Conclusions The review of national ASUs is a crucial step to provide the NVC with useful insights into the elimination process and to guide the development of targeted interventions. Against this background, the seven recommendations proposed by the NVC have been shared with the Italian Ministry of Health and the Technical Advisory Group on measles and rubella elimination and have been incorporated into the new Italian Elimination Plan 2019–2023 as a technical aid to facilitate the achievement of disease elimination goals

    Non-adherence to Mediterranean diet and synergy with lifestyle habits in the occurrence of breast cancer: a case-control study in Italy

    Get PDF
    Objective: The aim of this study was to assess the synergistic effect of non-adherence to the Mediterranean Diet (MD) and lifestyle habits on the occurrence of breast cancer (BC). Patients and methods: A case-control study was carried out from September 2018 to February 2019 at the Teaching Hospital "Umberto I" in Rome. A Food Frequency Questionnaire was used for assessing the level of adherence to MD, the IPAQ Questionnaire to measure physical activity, and AUDIT-C to estimate alcohol consumption. The possible interaction between risk factors was tested using the synergism index. Results: A total of 94 cases and 88 controls were enrolled (median age 55.8 for cases and 57.9 for controls). The MD Score over 6 was associated with low odds of having breast cancer (OR = 0.29; 95% CI: 0.12-0.69). There is a clear indication for the additivity and synergism between non-adherence to MD and many risk factors on the occurrence of BC: current smoker (S = 2.02; 95% CI 0.62-8.07), physical inactivity (S = 2.14; 95% CI 0.71 2-8.28) and alcohol consumption (S = 3.02; 95% CI 0.91-12.95). Conclusions: Primary prevention of BC can benefit from intervention targeting nutritional and lifestyle factors that act synergistically

    AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1

    Get PDF
    Damaged mitochondria are eliminated by mitophagy, a selective form of autophagy whose dysfunction associates with neurodegenerative diseases. PINK1, PARKIN and p62/SQTMS1 have been shown to regulate mitophagy, leaving hitherto ill-defined the contribution by key players in 'general' autophagy. In basal conditions, a pool of AMBRA1 - an upstream autophagy regulator and a PARKIN interactor - is present at the mitochondria, where its pro-autophagic activity is inhibited by Bcl-2. Here we show that, upon mitophagy induction, AMBRA1 binds the autophagosome adapter LC3 through a LIR (LC3 interacting region) motif, this interaction being crucial for regulating both canonical PARKIN-dependent and -independent mitochondrial clearance. Moreover, forcing AMBRA1 localization to the outer mitochondrial membrane unleashes a massive PARKIN- and p62-independent but LC3-dependent mitophagy. These results highlight a novel role for AMBRA1 as a powerful mitophagy regulator, through both canonical or noncanonical pathways

    Selective autophagy maintains centrosome integrity and accurate mitosis by turnover of centriolar satellites

    Get PDF
    The centrosome is the master orchestrator of mitotic spindle formation and chromosome segregation in animal cells. Centrosome abnormalities are frequently observed in cancer, but little is known of their origin and about pathways affecting centrosome homeostasis. Here we show that autophagy preserves centrosome organization and stability through selective turnover of centriolar satellite components, a process we termed doryphagy. Autophagy targets the satellite organizer PCM1 by interacting with GABARAPs via a C-terminal LIR motif. Accordingly, autophagy deficiency results in accumulation of large abnormal centriolar satellites and a resultant dysregulation of centrosome composition. These alterations have critical impact on centrosome stability and lead to mitotic centrosome fragmentation and unbalanced chromosome segregation. Our findings identify doryphagy as an important centrosome-regulating pathway and bring mechanistic insights to the link between autophagy dysfunction and chromosomal instability. In addition, we highlight the vital role of centriolar satellites in maintaining centrosome integrity

    HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System

    Get PDF
    The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently ('specialised') or non-covalently ('cargo' effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a 'core' T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the machinery with differential effector specificity and efficiency of target cell delivery

    A family of Type VI secretion system effector proteins that form ion-selective pores

    Get PDF
    This work was supported by the Wellcome Trust (104556/Z/14/Z, Senior Fellowship in Basic Biomedical Science to S.J.C.; 097818/Z/11/B and 109118/Z/15/Z, PhD studentships to University of Dundee), the MRC (MR/K000111X/1, New Investigator Research Grant to S.J.C.) and the Royal Society of Edinburgh (Biomedical Personal Research Fellowship to S.J.P.). We thank Roland Freudl for the gift of anti-OmpA antibody; Adam Ostrowski for construction of strains AO07 and AO08; Gal Horesh, Amy Dorward and Gavin Robertson for expert assistance; the Flow Cytometry and Cell Sorting Facility at the University of Dundee; and the Dundee Imaging Facility (supported by Wellcome Trust [097945/B/11/Z] and MRC [MR/K015869/1]) awards).Type VI secretion systems (T6SSs) are nanomachines widely used by bacteria to deliver toxic effector proteins directly into neighbouring cells. However, the modes of action of many effectors remain unknown. Here we report that Ssp6, an anti-bacterial effector delivered by a T6SS of the opportunistic pathogen Serratia marcescens, is a toxin that forms ion-selective pores. Ssp6 inhibits bacterial growth by causing depolarisation of the inner membrane in intoxicated cells, together with increased outer membrane permeability. Reconstruction of Ssp6 activity in vitro demonstrates that it forms cation-selective pores. A survey of bacterial genomes reveals that genes encoding Ssp6-like effectors are widespread in Enterobacteriaceae and often linked with T6SS genes. We conclude that Ssp6 and similar proteins represent a new family of T6SS-delivered anti-bacterial effectors.Publisher PDFPeer reviewe

    Restricted T-Cell Repertoire in the Epicardial Adipose Tissue of Non-ST Segment Elevation Myocardial Infarction Patients

    Get PDF
    Aims: Human epicardial adipose tissue, a dynamic source of multiple bioactive factors, holds a close functional and anatomic relationship with the epicardial coronary arteries and communicates with the coronary artery wall through paracrine and vasocrine secretions. We explored the hypothesis that T-cell recruitment into epicardial adipose tissue (EAT) in patients with non-ST segment elevation myocardial infarction (NSTEMI) could be part of a specific antigen-driven response implicated in acute coronary syndrome onset and progression. Methods and Results: We enrolled 32 NSTEMI patients and 34 chronic coronary syndrome (CCS) patients undergoing coronary artery bypass grafting (CABG) and 12 mitral valve disease (MVD) patients undergoing surgery. We performed EAT proteome profiling on pooled specimens from three NSTEMI and three CCS patients. We performed T-cell receptor (TCR) spectratyping and CDR3 sequencing in EAT and peripheral blood mononuclear cells of 29 NSTEMI, 31 CCS, and 12 MVD patients. We then used computational modeling studies to predict interactions of the TCR beta chain variable region (TRBV) and explore sequence alignments. The EAT proteome profiling displayed a higher content of pro-inflammatory molecules (CD31, CHI3L1, CRP, EMPRINN, ENG, IL-17, IL-33, MMP-9, MPO, NGAL, RBP-4, RETN, VDB) in NSTEMI as compared to CCS (P < 0.0001). CDR3-beta spectratyping showed a TRBV21 enrichment in EAT of NSTEMI (12/29 patients; 41%) as compared with CCS (1/31 patients; 3%) and MVD (none) (ANOVA for trend P < 0.001). Of note, 11/12 (92%) NSTEMI patients with TRBV21 perturbation were at their first manifestation of ACS. Four patients with the first event shared a distinctive TRBV21-CDR3 sequence of 178 bp length and 2/4 were carriers of the human leukocyte antigen (HLA)-A*03:01 allele. A 3D analysis predicted the most likely epitope able to bind HLA-A3*01 and interact with the TRBV21-CDR3 sequence of 178 bp length, while the alignment results were consistent with microbial DNA sequences. Conclusions: Our study revealed a unique immune signature of the epicardial adipose tissue, which led to a 3D modeling of the TCRBV/peptide/HLA-A3 complex, in acute coronary syndrome patients at their first event, paving the way for epitope-driven therapeutic strategies

    The Type VI secretion system deploys anti-fungal effectors against microbial competitors

    Get PDF
    This work was supported by the Wellcome Trust (Senior Research Fellowship in Basic Biomedical Science to S.J.C., 104556; 097377, J.Q.; 101873 & 200208, N.A.R.G.), the MRC (MR/K000111X/1, S.J .C; MC_UU_12016/5, M.T.), and the BBSRC (BB/K016393/1 & BB/P020119/1, J.Q.). We thank Maximilian Fritsch, Mario López Martín and Birte Hollmann for help with strain construction; Gary Eitzen for construction of pGED1; Donna MacCallum for the gift of Candida glabrata ATCC2001; Joachim Morschhäuser for the gift of pNIM1; Gillian Milne (Microscopy and Histology facility, University of Aberdeen) for assistance with TEM; and Peter Taylor, Michael Porter, Laura Monlezun and Colin Rickman for advice and technical assistance.Peer reviewedPostprin

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore