19,248 research outputs found
Temporal Dynamics of Photon Pairs Generated by an Atomic Ensemble
The time dependence of nonclassical correlations is investigated for two
fields (1,2) generated by an ensemble of cold Cesium atoms via the protocol of
Duan et al. [Nature Vol. 414, p. 413 (2001)]. The correlation function R(t1,t2)
for the ratio of cross to auto-correlations for the (1,2) fields at times
(t1,t2) is found to have a maximum value Rmax=292(+-)57, which significantly
violates the Cauchy-Schwarz inequality R<=1 for classical fields. Decoherence
of quantum correlations is observed over 175 ns, and is described by our model,
as is a new scheme to mitigate this effect.Comment: 5 pages, 5 figure
Spin liquid behaviour in Jeff=1/2 triangular lattice Ba3IrTi2O9
Ba3IrTi2O9 crystallizes in a hexagonal structure consisting of a layered
triangular arrangement of Ir4+ (Jeff=1/2). Magnetic susceptibility and heat
capacity data show no magnetic ordering down to 0.35K inspite of a strong
magnetic coupling as evidenced by a large Curie-Weiss temperature=-130K. The
magnetic heat capacity follows a power law at low temperature. Our measurements
suggest that Ba3IrTi2O9 is a 5d, Ir-based (Jeff=1/2), quantum spin liquid on a
2D triangular lattice.Comment: 10 pages including supplemental material, to be published in Phys.
Rev. B (Rapid Comm.
The 5′-3′ exoribonuclease Pacman is required for normal male fertility and is dynamically localized in cytoplasmic particles in Drosophila testis cells
The exoribonuclease Xrn1 is widely recognised as a key component in the 5'-3' RNA degradation pathway. This enzyme is highly conserved between yeast and humans and is known to be involved in RNA interference and degradation of microRNAs as well as RNA turnover. In yeast and human tissue culture cells, Xrn1 has been shown to be a component of P-bodies (processing bodies), dynamic cytoplasmic granules where RNA degradation can take place. In this paper we show for the first time that Pacman, the Drosophila homologue of Xrn1, is localized in cytoplasmic particles in Drosophila testis cells. These particles are present in both the mitotically dividing spermatogonia derived from primordial stem cells and in the transcriptionally active spermatocytes. Pacman is co-localized with the decapping activator dDcp1 and the helicase Me31B (a Dhh1 homologue) in these particles, although this co-localization is not completely overlapping, suggesting that there are different compartments within these granules. Particles containing Pacman respond to stress and depletion of 5'-3' decay factors in the same way as yeast P-bodies, and therefore are likely to be sites of mRNA degradation or storage. Pacman is shown to be required for normal Drosophila spermatogenesis, suggesting that control of mRNA stability is crucial in the testis differentiation pathway
Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities
The Rho/ROCK pathway is involved in numerous pivotal cellular processes that have made it an area of intense study in cancer medicine, however, Rho-associated coiled-coil containing protein kinase (ROCK) inhibitors are yet to make an appearance in the clinical cancer setting. Their performance as an anti-cancer therapy has been varied in pre-clinical studies, however, they have been shown to be effective vasodilators in the treatment of hypertension and post-ischaemic stroke vasospasm. This review addresses the various roles the Rho/ROCK pathway plays in angiogenesis, tumour vascular tone and reciprocal feedback from the tumour microenvironment and explores the potential utility of ROCK inhibitors as effective vascular normalising agents. ROCK inhibitors may potentially enhance the delivery and efficacy of chemotherapy agents and improve the effectiveness of radiotherapy. As such, repurposing of these agents as adjuncts to standard treatments may significantly improve outcomes for patients with cancer. A deeper understanding of the controlled and dynamic regulation of the key components of the Rho pathway may lead to effective use of the Rho/ROCK inhibitors in the clinical management of cancer
Counter-rotating Accretion Disks
We consider accretion disks consisting of counter-rotating gaseous components
with an intervening shear layer. Configurations of this type may arise from the
accretion of newly supplied counter-rotating gas onto an existing co-rotating
gas disk. For simplicity we consider the case where the gas well above the disk
midplane is rotating with angular rate and that well below has the
same properties but is rotating with rate . Using the Shakura-Sunyaev
alpha turbulence model, we find self-similar solutions where a thin (relative
to the full disk thickness) equatorial layer accretes very rapidly, essentially
at free-fall speed. As a result the accretion speed is much larger than it
would be for an alpha disk rotating in one direction. Counter-rotating
accretion disks may be a transient stage in the formation of counter-rotating
galaxies and in the accretion of matter onto compact objects.Comment: 7 pages, 3 figures, aas2pp4.sty, submitted to Ap
Unique gap structure and symmetry of the charge density wave in single-layer VSe
Single layers of transition metal dichalcogenides (TMDCs) are excellent
candidates for electronic applications beyond the graphene platform; many of
them exhibit novel properties including charge density waves (CDWs) and
magnetic ordering. CDWs in these single layers are generally a planar
projection of the corresponding bulk CDWs because of the quasi-two-dimensional
nature of TMDCs; a different CDW symmetry is unexpected. We report herein the
successful creation of pristine single-layer VSe, which shows a () CDW in contrast to the (4 4) CDW for the layers in
bulk VSe. Angle-resolved photoemission spectroscopy (ARPES) from the single
layer shows a sizable () CDW gap of 100 meV at the
zone boundary, a 220 K CDW transition temperature twice the bulk value, and no
ferromagnetic exchange splitting as predicted by theory. This robust CDW with
an exotic broken symmetry as the ground state is explained via a
first-principles analysis. The results illustrate a unique CDW phenomenon in
the two-dimensional limit
Effects of Surface Water Withdrawal and other Anthropogenic Activities on the Lower St. Johns River Salinity
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Single-Photon Generation from Stored Excitation in an Atomic Ensemble
Single photons are generated from an ensemble of cold Cs atoms via the
protocol of Duan et al. [Nature \textbf{414}, 413 (2001)]. Conditioned upon an
initial detection from field 1 at 852 nm, a photon in field 2 at 894 nm is
produced in a controlled fashion from excitation stored within the atomic
ensemble. The single-quantum character of the field 2 is demonstrated by the
violation of a Cauchy-Schwarz inequality, namely , where describes detection of two events
conditioned upon an initial detection , with
for single photons.Comment: 5 pages, 4 figure
- …