627 research outputs found

    QCD dynamics in a constant chromomagnetic field

    Full text link
    We investigate the phase transition in full QCD with two flavors of staggered fermions in presence of a constant abelian chromomagnetic field. We find that the critical temperature depends on the strength of the chromomagnetic field and that the deconfined phase extends to very low temperatures for strong enough fields. As in the case of zero external field, a single transition is detected, within statistical uncertainties, where both deconfinement and chiral symmetry restoration take place. We also find that the chiral condensate increases with the strength of the chromomagnetic field.Comment: 18 pages, 8 figures, 1 tabl

    Long range chromomagnetic fields at high temperature

    Full text link
    The magnetic mass of neutral gluons in Abelian chromomagnetic field at high temperature is calculated in SU(2)$ gluodynamics. It is noted that such type fields are spontaneously generated at high temperature. The mass is computed either from the Schwinger-Dyson equation accounting for the one-loop polarization tensor or in Monte-Carlo simulations on a lattice. In latter case, an average magnetic flux penetrating a plaquette is measured for a number of lattices. Both calculations are in agreement with each other and result in zero magnetic mass. Some applications of the results obtained are discussed.Comment: 14 pages, 1 figur

    A gauge invariant study of the monopole condensation in non Abelian lattice gauge theories

    Get PDF
    We investigate the Abelian monopole condensation in finite temperature SU(2) and SU(3) pure lattice gauge theories. To this end we introduce a gauge invariant disorder parameter built up in terms of the lattice Schr\"odinger functional. Our numerical results show that the disorder parameter is different from zero and Abelian monopole condense in the confined phase. On the other hand our numerical data suggest that the disorder parameter tends to zero, in the thermodynamic limit, when the gauge coupling constant approaches the critical deconfinement value. In the case of SU(3) we also compare the different kinds of Abelian monopoles which can be defined according to the choice of the Abelian subgroups.Comment: 18 pages, 7 figures, LaTe

    How to get from imaginary to real chemical potential

    Get PDF
    Using the exactly solvable Gross-Neveu model as theoretical laboratory, we analyse in detail the relationship between a relativistic quantum field theory at real and imaginary chemical potential. We find that one can retrieve the full information about the phase diagram of the theory from an imaginary chemical potential calculation. The prerequisite is to evaluate and analytically continue the effective potential for the chiral order parameter, rather than thermodynamic observables or phase boundaries. In the case of an inhomogeneous phase, one needs to compute the full effective action, a functional of the space-dependent order parameter, at imaginary chemical potential.Comment: revtex, 9 pages, 10 figures; v2: add more references, modify concluding sectio

    The polarization tensor of neutral gluons in external fields at high temperature

    Full text link
    The one-loop polarization operator of neutral gluons in the background constant Abelian isotopic, H3H_{3}, and hypercharge, H8H_{8}, chromomagnetic fields combined with A0A_0 electrostatic potential at high temperature is calculated. The case when A0=0A_0=0 is investigated separately. The proper time method is applied. It is found that neutral gluons do not acquire magnetic masses in the background fields, in contrast to the charged ones. The application of the results are discussed.Comment: 13 pages, 1 figur

    Lattice QCD Simulations in External Background Fields

    Full text link
    We discuss recent results and future prospects regarding the investigation, by lattice simulations, of the non-perturbative properties of QCD and of its phase diagram in presence of magnetic or chromomagnetic background fields. After a brief introduction to the formulation of lattice QCD in presence of external fields, we focus on studies regarding the effects of external fields on chiral symmetry breaking, on its restoration at finite temperature and on deconfinement. We conclude with a few comments regarding the effects of electromagnetic background fields on gluodynamics.Comment: 31 pages, 10 figures, minor changes and references added. To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Dynamical Symmetry Breaking in Planar QED

    Get PDF
    We investigate (2+1)-dimensional QED coupled with Dirac fermions both at zero and finite temperature. We discuss in details two-components (P-odd) and four-components (P-even) fermion fields. We focus on P-odd and P-even Dirac fermions in presence of an external constant magnetic field. In the spontaneous generation of the magnetic condensate survives even at infinite temperature. We also discuss the spontaneous generation of fermion mass in presence of an external magnetic field.Comment: 34 pages, 8 postscript figures, final version to appear on J. Phys.

    Monopoles, confinement and deconfinement of (2+1)D compact lattice QED in external fields

    Get PDF
    The compact Abelian model in three space--time dimensions is studied in the presence of external electromagnetic fields at finite temperatures. We show that the deconfinement phase transition is independent on the strength of the external fields. This result is in agreement with our observation that the external fields create small--size magnetic dipoles from the vacuum which do not influence the confining properties of the model. Contrary to the deconfinement phase, the internal field in the direction of the applied external field is attenuated in the confinement phase, this screening becomes stronger with decreasing temperature.Comment: 22 pages, 24 EPS figures, LaTeX uses epsfig.st

    The Savvidy ``ferromagnetic vacuum'' in three-dimensional lattice gauge theory

    Full text link
    The vacuum effective potential of three-dimensional SU(2) lattice gauge theory in an applied color-magnetic field is computed over a wide range of field strengths. The background field is induced by an external current, as in continuum field theory. Scaling and finite volume effects are analyzed systematically. The first evidence from lattice simulations is obtained of the existence of a nontrivial minimum in the effective potential. This supports a ``ferromagnetic'' picture of gluon condensation, proposed by Savvidy on the basis of a one-loop calculation in (3+1)-dimensional QCD.Comment: 9pp (REVTEX manuscript). Postscript figures appende

    Confining Properties of the Homogeneous Self-Dual Field and the Effective Potential in SU(2) Yang-Mills Theory

    Full text link
    We examine in non-Abelian gauge theory the heavy quark limit in the presence of the (anti-)self-dual homogeneous background field and see that a confining potential emerges, consistent with the Wilson criterion, although the potential is quadratic and not linear in the quark separation. This builds upon the well-known feature that propagators in such a background field are entire functions. The way in which deconfinement can occur at finite temperature is then studied in the static temporal gauge by calculation of the effective potential at high temperature. Finally we discuss the problems to be surmounted in setting up the calculation of the effective potential nonperturbatively on the lattice.Comment: 31 pages, LaTeX, expanded discussion and derivations in Sections 2 and
    corecore