2,864 research outputs found

    Film dynamics and lubricant depletion by droplets moving on lubricated surfaces

    Full text link
    Lubricated surfaces have shown promise in numerous applications where impinging foreign droplets must be removed easily; however, before they can be widely adopted, the problem of lubricant depletion, which eventually leads to decreased performance, must be solved. Despite recent progress, a quantitative mechanistic explanation for lubricant depletion is still lacking. Here, we first explained the shape of a droplet on a lubricated surface by balancing the Laplace pressures across interfaces. We then showed that the lubricant film thicknesses beneath, behind, and wrapping around a moving droplet change dynamically with droplet's speed---analogous to the classical Landau-Levich-Derjaguin problem. The interconnected lubricant dynamics results in the growth of the wetting ridge around the droplet, which is the dominant source of lubricant depletion. We then developed an analytic expression for the maximum amount of lubricant that can be depleted by a single droplet. Counter-intuitively, faster moving droplets subjected to higher driving forces deplete less lubricant than their slower moving counterparts. The insights developed in this work will inform future work and the design of longer-lasting lubricated surfaces

    The " Mendelian Gene " and the " Molecular Gene " : Two Relevant Concepts of Genetic Units

    Get PDF
    International audienceWe focus here on two prevalent meanings of the word gene in research articles. On one hand, the gene, named here “molecular gene”, is a stretch of DNA that is transcribed and codes for an RNA or a polypeptide with a known or presumed function (as in “gene network'), whose exact spatial delimitation on the chromosome remains a matter of debate, especially in cases with alternative splicing, antisense transcripts, etc. On the other hand, the gene, called here “Mendelian gene”, is a segregating genetic unit which is detected through phenotypic differences associated with different alleles at the same locus (as in “gene flow”). We show that the “Mendelian gene” concept is still extensively used today in biology research and is sometimes confused with the “molecular gene”. We try here to clarify the distinction between both concepts. Efforts to delineate the beginning and the end of the DNA sequence corresponding to the “Mendelian gene” and the “molecular gene” reveal that both entities do not always match. We argue that both concepts are part of two relevant frameworks for explaining the biological world

    N-Heterocyclic carbene iron complexes catalyze the ring-opening polymerization of lactide.

    Get PDF
    Poly(lactic acid), PLA, which holds great promise as a biodegradable substitute of fossil resource-derived polyolefins, is industrially produced by the ring-opening polymerization of lactide using a potentially harmful tin catalyst. Based on mechanistic insights into the reaction of N-heterocyclic carbene (NHC) iron complexes with carbonyl substrates, we surmised and demonstrate here that such complexes are excellent catalysts for the bulk polymerization of lactide. We show that an iron complex with a triazolylidene NHC ligand is active at lactide/catalyst ratios of up to 10 000 : 1, produces polylactide with relatively high number-average molecular weights (up to 50 kg mol-1) and relatively narrow dispersity (Đ ∼ 1.6), and features an apparent polymerization rate constant k app of up to 8.5 × 10-3 s-1, which is more than an order of magnitude higher than that of the industrially used tin catalyst. Kinetic studies and end-group analyses support that the catalytically active species is well defined and that the polymerization proceeds via a coordination-insertion mechanism. The robustness of the catalyst allows technical grade lactide to be polymerized, thus offering ample potential for application on larger scale in an industrially relevant setting

    A coproduct structure on the formal affine Demazure algebra

    Full text link
    In the present paper we generalize the coproduct structure on nil Hecke rings introduced and studied by Kostant-Kumar to the context of an arbitrary algebraic oriented cohomology theory and its associated formal group law. We then construct an algebraic model of the T-equivariant oriented cohomology of the variety of complete flags.Comment: 28 pages; minor revision of the previous versio

    Response of an artificially blown clarinet to different blowing pressure profiles

    Full text link
    Using an artificial mouth with an accurate pressure control, the onset of the pressure oscillations inside the mouthpiece of a simplified clarinet is studied experimentally. Two time profiles are used for the blowing pressure: in a first set of experiments the pressure is increased at constant rates, then decreased at the same rate. In a second set of experiments the pressure rises at a constant rate and is then kept constant for an arbitrary period of time. In both cases the experiments are repeated for different increase rates. Numerical simulations using a simplified clarinet model blown with a constantly increasing mouth pressure are compared to the oscillating pressure obtained inside the mouthpiece. Both show that the beginning of the oscillations appears at a higher pressure values than the theoretical static threshold pressure, a manifestation of bifurcation delay. Experiments performed using an interrupted increase in mouth pressure show that the beginning of the oscillation occurs close to the stop in the increase of the pressure. Experimental results also highlight that the speed of the onset transient of the sound is roughly the same, independently of the duration of the increase phase of the blowing pressure.Comment: 14 page

    Proteomic and functional analyses of the virion transmembrane proteome of cyprinid herpesvirus 3

    Get PDF
    Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (ORF32, ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are non-essential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the non-essential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro, and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25 deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs. IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro; (iii) seven of the non-essential proteins affect viral growth in vitro, and two affect virulence in vivo; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins

    Diamagnetism of quantum gases with singular potentials

    Full text link
    We consider a gas of quasi-free quantum particles confined to a finite box, subjected to singular magnetic and electric fields. We prove in great generality that the finite volume grand-canonical pressure is jointly analytic in the chemical potential ant the intensity of the external magnetic field. We also discuss the thermodynamic limit
    corecore