319 research outputs found

    Portable performance on heterogeneous architectures

    Get PDF
    Trends in both consumer and high performance computing are bringing not only more cores, but also increased heterogeneity among the computational resources within a single machine. In many machines, one of the greatest computational resources is now their graphics coprocessors (GPUs), not just their primary CPUs. But GPU programming and memory models differ dramatically from conventional CPUs, and the relative performance characteristics of the different processors vary widely between machines. Different processors within a system often perform best with different algorithms and memory usage patterns, and achieving the best overall performance may require mapping portions of programs across all types of resources in the machine. To address the problem of efficiently programming machines with increasingly heterogeneous computational resources, we propose a programming model in which the best mapping of programs to processors and memories is determined empirically. Programs define choices in how their individual algorithms may work, and the compiler generates further choices in how they can map to CPU and GPU processors and memory systems. These choices are given to an empirical autotuning framework that allows the space of possible implementations to be searched at installation time. The rich choice space allows the autotuner to construct poly-algorithms that combine many different algorithmic techniques, using both the CPU and the GPU, to obtain better performance than any one technique alone. Experimental results show that algorithmic changes, and the varied use of both CPUs and GPUs, are necessary to obtain up to a 16.5x speedup over using a single program configuration for all architectures.United States. Dept. of Energy (Award DE-SC0005288)United States. Defense Advanced Research Projects Agency (Award HR0011-10-9-0009)National Science Foundation (U.S.) (Award CCF-0632997

    An anti-siglec-8 antibody depletes sputum eosinophils from asthmatic subjects and inhibits lung mast cells

    Get PDF
    Background Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is expressed on mast cells and eosinophils, but information about Siglec-8 expression and function in the lung is limited. A humanized antibody, AK002, targeting Siglec-8 is undergoing development for treatment of diseases associated with mast cell and eosinophil-driven inflammation. Objective To characterize Siglec-8 expression in the airway in asthma and determine whether antibodies that target Siglec-8 (S8mAbs) can decrease airway eosinophils in asthma or inhibit lung mast cell activation. Methods Gene expression profiling and flow cytometry were used to characterize Siglec-8 expression in sputum cells from stable asthma. An antibody-dependent cellular cytotoxicity (ADCC) assay was used to determine whether an S8mAb can decrease eosinophils in sputum from asthma patients ex vivo. A mast cell activation assay was used to determine whether an S8mAb can inhibit mast cell activation in human lung tissue ex vivo. Results Gene expression for Siglec-8 is increased in sputum cells in asthma and correlates with gene expression for eosinophils and mast cells. Gene expression for Siglec-8 is inversely and significantly correlated with measures of airflow obstruction in asthma patients. Siglec-8 is prominently expressed on the surface of eosinophils and mast cells in sputum. S8mAbs decrease eosinophils in sputum from patients with asthma and inhibit Fc epsilon R1-activated mast cells in lung tissues. Conclusions and Clinical Relevance Siglec-8 is highly expressed on eosinophils and mast cells in asthmatic sputum and targeting Siglec-8 with an antibody is a plausible strategy to decrease sputum eosinophils and inhibit lung mast cells in asthma

    Bacterial biogeography of adult airways in atopic asthma

    Get PDF
    Abstract Background Perturbations to the composition and function of bronchial bacterial communities appear to contribute to the pathophysiology of asthma. Unraveling the nature and mechanisms of these complex associations will require large longitudinal studies, for which bronchoscopy is poorly suited. Studies of samples obtained by sputum induction and nasopharyngeal brushing or lavage have also reported asthma-associated microbiota characteristics. It remains unknown, however, whether the microbiota detected in these less-invasive sample types reflect the composition of bronchial microbiota in asthma. Results Bacterial microbiota in paired protected bronchial brushings (BB; n = 45), induced sputum (IS; n = 45), oral wash (OW; n = 45), and nasal brushings (NB; n = 27) from adults with mild atopic asthma (AA), atopy without asthma (ANA), and healthy controls (HC) were profiled using 16S rRNA gene sequencing. Though microbiota composition varied with sample type (p < 0.001), compositional similarity was greatest for BB-IS, particularly in AAs and ANAs. The abundance of genera detected in BB correlated with those detected in IS and OW (r median [IQR] 0.869 [0.748–0.942] and 0.822 [0.687–0.909] respectively), but not with those in NB (r = 0.004 [− 0.003–0.011]). The number of taxa shared between IS-BB and NB-BB was greater in AAs than in HCs (p < 0.05) and included taxa previously associated with asthma. Of the genera abundant in NB, only Moraxella correlated positively with abundance in BB; specific members of this genus were shared between the two compartments only in AAs. Relative abundance of Moraxella in NB of AAs correlated negatively with that of Corynebacterium but positively with markers of eosinophilic inflammation in the blood and BAL fluid. The genus, Corynebacterium, trended to dominate all NB samples of HCs but only half of AAs (p = 0.07), in whom abundance of this genus was negatively associated with markers of eosinophilic inflammation. Conclusions Induced sputum is superior to nasal brush or oral wash for assessing bronchial microbiota composition in asthmatic adults. Although compositionally similar to the bronchial microbiota, the microbiota in induced sputum are distinct, reflecting enrichment of oral bacteria. Specific bacterial genera are shared between the nasal and the bronchial mucosa which are associated with markers of systemic and bronchial inflammation.https://deepblue.lib.umich.edu/bitstream/2027.42/144218/1/40168_2018_Article_487.pd

    Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]

    Get PDF
    Quantitative trait loci (QTL) studies provide insight into the complexity of drought tolerance mechanisms. Molecular markers used in these studies also allow for marker-assisted selection (MAS) in breeding programs, enabling transfer of genetic factors between breeding lines without complete knowledge of their exact nature. However, potential for recombination between markers and target genes limit the utility of MAS-based strategies. Candidate gene mapping offers an alternative solution to identify trait determinants underlying QTL of interest. Here, we used restriction site polymorphisms to investigate co-location of candidate genes with QTL for seedling drought stress-induced premature senescence identified previously in cowpea. Genomic DNA isolated from 113 F2:8 RILs of drought-tolerant IT93K503-1 and drought susceptible CB46 genotypes was digested with combinations of EcoR1 and HpaII, Mse1, or Msp1 restriction enzymes and amplified with primers designed from 13 drought-responsive cDNAs. JoinMap 3.0 and MapQTL 4.0 software were used to incorporate polymorphic markers onto the AFLP map and to analyze their association with the drought response QTL. Seven markers co-located with peaks of previously identified QTL. Isolation, sequencing, and blast analysis of these markers confirmed their significant homology with drought or other abiotic stress-induced expressed sequence tags (EST) from cowpea and other plant systems. Further, homology with coding sequences for a multidrug resistance protein 3 and a photosystem I assembly protein ycf3 was revealed in two of these candidates. These results provide a platform for the identification and characterization of genetic trait determinants underlying seedling drought tolerance in cowpea

    Stochastic Cytokine Expression Induces Mixed T Helper Cell States

    Get PDF
    During eukaryotic development, the induction of a lineage-specific transcription factor typically drives differentiation of multipotent progenitor cells, while repressing that of alternative lineages. This process is often mediated by some extracellular signaling molecules, such as cytokines that can bind to cell surface receptors, leading to activation and/or repression of transcription factors. We explored the early differentiation of naive CD4 T helper (Th) cells into Th1 versus Th2 states by counting single transcripts and quantifying immunofluorescence in individual cells. Contrary to mutually exclusive expression of antagonistic transcription factors, we observed their ubiquitous co-expression in individual cells at high levels that are distinct from basal-level co-expression during lineage priming. We observed that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in these single cells. This cell-to-cell variation in the cytokine expression during the early phase of T helper cell differentiation is significantly larger than in the fully differentiated state. Upon inhibition of cytokine signaling, we observed the classic mutual exclusion of antagonistic transcription factors, thus revealing a weak intracellular network otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process CD4 T cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.) (Pioneer Award)National Institutes of Health (U.S.) (Grant R01-GM068957

    Rifampin pharmacokinetics in children, with and without human immunodeficiency virus infection, hospitalized for the management of severe forms of tuberculosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rifampin is a key drug in antituberculosis chemotherapy because it rapidly kills the majority of bacilli in tuberculosis lesions, prevents relapse and thus enables 6-month short-course chemotherapy. Little is known about the pharmacokinetics of rifampin in children. The objective of this study was to evaluate the pharmacokinetics of rifampin in children with tuberculosis, both human immunodeficiency virus type-1-infected and human immunodeficiency virus-uninfected.</p> <p>Methods</p> <p>Fifty-four children, 21 human immunodeficiency virus-infected and 33 human immunodeficiency virus-uninfected, mean ages 3.73 and 4.05 years (<it>P </it>= 0.68), respectively, admitted to a tuberculosis hospital in Cape Town, South Africa with severe forms of tuberculosis were studied approximately 1 month and 4 months after commencing antituberculosis treatment. Blood specimens for analysis were drawn in the morning, 45 minutes, 1.5, 3.0, 4.0 and 6.0 hours after dosing. Rifampin concentrations were determined by liquid chromatography tandem mass spectrometry. For two sample comparisons of means, the Welch version of the t-test was used; associations between variables were examined by Pearson correlation and by multiple linear regression.</p> <p>Results</p> <p>The children received a mean rifampin dosage of 9.61 mg/kg (6.47 to 15.58) body weight at 1 month and 9.63 mg/kg (4.63 to 17.8) at 4 months after commencing treatment administered as part of a fixed-dose formulation designed for paediatric use. The mean rifampin area under the curve 0 to 6 hours after dosing was 14.9 and 18.1 μg/hour/ml (<it>P </it>= 0.25) 1 month after starting treatment in human immunodeficiency virus-infected and human immunodeficiency virus-uninfected children, respectively, and 16.52 and 17.94 μg/hour/ml (<it>P </it>= 0.59) after 4 months of treatment. The mean calculated 2-hour rifampin concentrations in these human immunodeficiency virus-infected and human immunodeficiency virus-uninfected children were 3.9 and 4.8 μg/ml (<it>P </it>= 0.20) at 1 month after the start of treatment and 4.0 and 4.6 μg/ml (<it>P </it>= 0.33) after 4 months of treatment. These values are considerably less than the suggested lower limit for 2-hour rifampin concentrations in adults of 8.0 μg/ml and even 4 μg/ml</p> <p>Conclusion</p> <p>Both human immunodeficiency virus-infected and human immunodeficiency virus-uninfected children with tuberculosis have very low rifampin serum concentrations after receiving standard rifampin dosages similar to those used in adults. Pharmacokinetic studies of higher dosages of rifampin are urgently needed in children to assist in placing the dosage of rifampin used in childhood on a more scientific foundation.</p

    Invariant Natural Killer T Cell Agonist Modulates Experimental Focal and Segmental Glomerulosclerosis

    Get PDF
    A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis (FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T (iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin(ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1α, IL-1β, IL-17, TNF-α, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-β analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-β could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-β, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-β through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management
    corecore