20 research outputs found

    A quantum motor: directed wavepacket motion in an optical lattice

    Full text link
    We propose a method for arbitrary manipulations of a quantum wavepacket in an optical lattice by a suitable modulation of the lattice amplitude. A theoretical model allows to determine the modulation corresponding to a given wavepacket motion, so that arbitrary atomic trajectories can be generated. The method is immediately usable in state of the art experiments

    Tracking quasi-classical chaos in ultracold boson gases

    Full text link
    We study the dynamics of a ultra-cold boson gas in a lattice submitted to a constant force. We track the route of the system towards chaos created by the many-body-induced nonlinearity and show that relevant information can be extracted from an experimentally accessible quantity, the gas mean position. The threshold nonlinearity for the appearance of chaotic behavior is deduced from KAM arguments and agrees with the value obtained by calculating the associated Lyapunov exponent.Comment: 4 pages, revtex4, submitted to PR

    Doppler cooling to the recoil limit using sharp atomic transitions

    Full text link
    In this paper, we develop an analytical approach to Doppler cooling of atoms by one- or two-photon transitions when the natural width of the excited level is so small that the process leads to a Doppler temperature comparable to the recoil temperature. A ``quenching'' of the sharp line is introduced in order to allow control of the time scale of the problem. In such limit, the usual Fokker-Planck equation does not correctly describe the cooling process. We propose a generalization of the Fokker-Planck equation and derive a new model which is able to reproduce correctly the numerical results, up to the recoil limit. Two cases of practical interest, one-photon Doppler cooling of strontium and two-photon Doppler cooling of hydrogen are considered.Comment: 5 pages, RevTex 4, submitted to JOSA B (special issue "laser cooling of atoms"

    Classical chaos with Bose-Einstein condensates in tilted optical lattices

    Full text link
    A widely accepted definition of ``quantum chaos'' is ``the behavior of a quantum system whose \emph{classical} \emph{limit is chaotic}''. The dynamics of quantum-chaotic systems is nevertheless very different from that of their classical counterparts. A fundamental reason for that is the linearity of Schr{\"o}dinger equation. In this paper, we study the quantum dynamics of an ultra-cold quantum degenerate gas in a tilted optical lattice and show that it displays features very close to \emph{classical} chaos. We show that its phase space is organized according to the Kolmogorov-Arnold-Moser theorem.Comment: 4 pages, 3 figure

    Continuous-wave Doppler-cooling of hydrogen atoms with two-photon transitions

    Full text link
    We propose and analyze the possibility of performing two-photon continuous-wave Doppler-cooling of hydrogen atoms using the 1S-2S transition. "Quenching" of the 2S level (by coupling with the 2P state) is used to increase the cycling frequency, and to control the equilibrium temperature. Theoretical and numerical studies of the heating effect due to Doppler-free two-photon transitions evidence an increase of the temperature by a factor of two. The equilibrium temperature decreases with the effective (quenching dependent) width of the excited state and can thus be adjusted up to values close to the recoil temperature.Comment: 11 pages, 4 figures in eps forma

    Atomic Dipole Traps with Amplified Spontaneous Emission: A Proposal

    Full text link
    We propose what we believe to be a novel type of optical source for ultra-cold atomic Far Off-Resonance optical-dipole Traps (FORTs). The source is based on an Erbium Amplified Spontaneous Emission (ASE) source that seeds a high power Erbium Doped Fiber Amplifier (EDFA). The main interest of this source is its very low coherence length, thus allowing an incoherent superposition of several trapping beams without any optical interference. The behavior of the superimposed beams is then a scalar sum greatly simplifying complex configurations. As an illustration, we report an estimation of the intensity noise of this source and an estimation of the atomic excess heating rate for an evaporative cooling experiment application. They are both found to be suitable for cold atoms experiments

    Theoretical analysis of quantum dynamics in 1D lattices: Wannier-Stark description

    Get PDF
    This papers presents a formalism describing the dynamics of a quantum particle in a one-dimensional tilted time-dependent lattice. The description uses the Wannier-Stark states, which are localized in each site of the lattice and provides a simple framework leading to fully-analytical developments. Particular attention is devoted to the case of a time-dependent potential, which results in a rich variety of quantum coherent dynamics is found.Comment: 8 pages, 6 figures, submitted to PR
    corecore