4,263 research outputs found

    Velocity Distribution of Driven Inelastic One-component Maxwell gas

    Full text link
    The nature of the velocity distribution of a driven granular gas, though well studied, is unknown as to whether it is universal or not, and if universal what it is. We determine the tails of the steady state velocity distribution of a driven inelastic Maxwell gas, which is a simple model of a granular gas where the rate of collision between particles is independent of the separation as well as the relative velocity. We show that the steady state velocity distribution is non-universal and depends strongly on the nature of driving. The asymptotic behavior of the velocity distribution are shown to be identical to that of a non-interacting model where the collisions between particles are ignored. For diffusive driving, where collisions with the wall are modelled by an additive noise, the tails of the velocity distribution is universal only if the noise distribution decays faster than exponential.Comment: 8 pages, 6 figure

    Constant flux relation for diffusion-limited cluster-cluster aggregation

    Get PDF
    In a nonequilibrium system, a constant flux relation (CFR) expresses the fact that a constant flux of a conserved quantity exactly determines the scaling of the particular correlation function linked to the flux of that conserved quantity. This is true regardless of whether mean-field theory is applicable or not. We focus on cluster-cluster aggregation and discuss the consequences of mass conservation for the steady state of aggregation models with a monomer source in the diffusion-limited regime. We derive the CFR for the flux-carrying correlation function for binary aggregation with a general scale-invariant kernel and show that this exponent is unique. It is independent of both the dimension and of the details of the spatial transport mechanism, a property which is very atypical in the diffusion-limited regime. We then discuss in detail the "locality criterion" which must be satisfied in order for the CFR scaling to be realizable. Locality may be checked explicitly for the mean-field Smoluchowski equation. We show that if it is satisfied at the mean-field level, it remains true over some finite range as one perturbatively decreases the dimension of the system below the critical dimension, d(c)=2, entering the fluctuation-dominated regime. We turn to numerical simulations to verify locality for a range of systems in one dimension which are, presumably, beyond the perturbative regime. Finally, we illustrate how the CFR scaling may break down as a result of a violation of locality or as a result of finite size effects and discuss the extent to which the results apply to higher order aggregation processes

    Preventing Unraveling in Social Networks Gets Harder

    Full text link
    The behavior of users in social networks is often observed to be affected by the actions of their friends. Bhawalkar et al. \cite{bhawalkar-icalp} introduced a formal mathematical model for user engagement in social networks where each individual derives a benefit proportional to the number of its friends which are engaged. Given a threshold degree kk the equilibrium for this model is a maximal subgraph whose minimum degree is k\geq k. However the dropping out of individuals with degrees less than kk might lead to a cascading effect of iterated withdrawals such that the size of equilibrium subgraph becomes very small. To overcome this some special vertices called "anchors" are introduced: these vertices need not have large degree. Bhawalkar et al. \cite{bhawalkar-icalp} considered the \textsc{Anchored kk-Core} problem: Given a graph GG and integers b,kb, k and pp do there exist a set of vertices BHV(G)B\subseteq H\subseteq V(G) such that Bb,Hp|B|\leq b, |H|\geq p and every vertex vHBv\in H\setminus B has degree at least kk is the induced subgraph G[H]G[H]. They showed that the problem is NP-hard for k2k\geq 2 and gave some inapproximability and fixed-parameter intractability results. In this paper we give improved hardness results for this problem. In particular we show that the \textsc{Anchored kk-Core} problem is W[1]-hard parameterized by pp, even for k=3k=3. This improves the result of Bhawalkar et al. \cite{bhawalkar-icalp} (who show W[2]-hardness parameterized by bb) as our parameter is always bigger since pbp\geq b. Then we answer a question of Bhawalkar et al. \cite{bhawalkar-icalp} by showing that the \textsc{Anchored kk-Core} problem remains NP-hard on planar graphs for all k3k\geq 3, even if the maximum degree of the graph is k+2k+2. Finally we show that the problem is FPT on planar graphs parameterized by bb for all k7k\geq 7.Comment: To appear in AAAI 201
    corecore