4,341 research outputs found

    Upregulated wnt-11 and mir-21 expression trigger epithelial mesenchymal transition in aggressive prostate cancer cells

    Get PDF
    Prostate cancer (PCa) is the second-leading cause of cancer-related death among men. microRNAs have been identified as having potential roles in tumorigenesis. An oncomir, miR-21, is commonly highly upregulated in many cancers, including PCa, and showed correlation with the Wnt-signaling axis to increase invasion. Wnt-11 is a developmentally regulated gene and has been found to be upregulated in PCa, but its mechanism is unknown. The present study aimed to investigate the roles of miR-21 and Wnt-11 in PCa in vivo and in vitro. First, different Gleason score PCa tissue samples were used; both miR-21 and Wnt-11 expressions correlate with high Gleason scores in PCa patient tissues. This data then was confirmed with formalin-fixed paraffin cell blocks using PCa cell lines LNCaP and PC3. Cell survival and colony formation studies proved that miR-21 involves in cells’ behaviors, as well as the epithelial-mesenchymal transition. Consistent with the previous data, silencing miR-21 led to significant inhibition of cellular invasiveness. Overall, these results suggest that miR-21 plays a significant role related to Wnt-11 in the pathophysiology of PCa

    Travel Patterns and Expenditures of the Mature Market

    Get PDF
    Travel by persons over the age of 50 represents a key component of the leisure market. This paper examines participation in favorite activities, distance traveled, length of stay and expenditures for selected outdoor activities by this mature market based upon data from the Nationwide Recreation Survey. The paper then addresses some marketing implications suggested by these data for the development and marketing of leisure services

    Presentation of functional groups on self-assembled supramolecular peptide nanofibers mimicking glycosaminoglycans for directed mesenchymal stem cell differentiation

    Get PDF
    Organizational complexity and functional diversity of the extracellular matrix regulate cellular behaviors. The extracellular matrix is composed of various proteins in the form of proteoglycans, glycoproteins, and nanofibers whose types and combinations change depending on the tissue type. Proteoglycans, which are proteins that are covalently attached to glycosaminoglycans, contribute to the complexity of the microenvironment of the cells. The sulfation degree of the glycosaminoglycans is an important and distinct feature at specific developmental stages and tissue types. Peptide amphiphile nanofibers can mimic natural glycosaminoglycans and/or proteoglycans, and they form a synthetic nanofibrous microenvironment where cells can proliferate and differentiate towards different lineages. In this study, peptide nanofibers were used to provide varying degrees of sulfonation mimicking the natural glycosaminoglycans by forming a microenvironment for the survival and differentiation of stem cells. The effects of glucose, carboxylate, and sulfonate groups on the peptide nanofibers were investigated by considering the changes in the differentiation profiles of rat mesenchymal stem cells in the absence of any specific differentiation inducers in the culture medium. The results showed that a higher sulfonate-to-glucose ratio is associated with adipogenic differentiation and a higher carboxylate-to-glucose ratio is associated with osteochondrogenic differentiation of the rat mesenchymal stem cells. Overall, these results demonstrate that supramolecular peptide nanosystems can be used to understand the fine-tunings of the extracellular matrix such as sulfation profile on specific cell types. © 2017 The Royal Society of Chemistry

    Tracking the timing of Neotethyan oceanic slab break-off: Geochronology and geochemistry of the quartz diorite porphyries, NE Turkey

    Get PDF
    The initiation of the break-off of the northern branch of the Neotethyan oceanic lithosphere is an important but poorly understood event in the geology of the Sakarya Zone (SZ) in northeastern Turkey. Although it is well-known that Latest Cretaceous intrusives (~70 Ma) and early Eocene adakitic magmatic rocks are present in the eastern SZ, the outcrops of the early Eocene non-adakitic rocks are very limited, and their tectono-magmatic evolution has not been studied. We describe a small outcrop of non-adakitic quartz diorite porphyry in the Kov area of the Gümüşhane region in northeastern Turkey. The genesis of these porphyries is significant in evaluating the syn- to post-collision-related magmatism. The LA-ICP-MS zircon U-Pb dating revealed that the Kov quartz diorite porphyries (KQDP) formed at ca. 50 Ma, coeval with adakitic rocks, and ~20 Myr later than the slab roll-back-related intrusive rocks. The KQDPs are calc-alkaline in composition and enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, Ti), with significant negative anomalies of Nb, Ta, and Ti but positive anomalies of Th, U, and Pb. Isotopic compositions of the samples show limited range of variation and slight enrichment of 87Sr/86Sr(t) (0.70489 to 0.70555), εNd(t) (−1.4 to −1.2) with TDM of 1.11 to 1.61 Ga. Pb isotopic ratios of the samples point to an enriched mantle source. They were likely crystallized from the melt that originated from an EM2-type spinel-facies subcontinental lithospheric mantle (SCLM), followed by the fractionation with insignificant crustal assimilation. The SCLM was metasomatically enriched, and the metasomatic agent was likely H2O-rich fluids rather than sediments released from subducting oceanic crust during the Late Cretaceous closure of the Neotethyan oceanic lithosphere. In conjunction with the geological background and previous data, we propose that the generation of the KQDPs resulted from a slab break-off event that caused ascending or infiltration of hot asthenosphere, triggering mantle melting. Such sporadic occurrences of the KQDPs, with coeval adakitic rocks in the SZ, are likely associated with the onset of extensional tectonics due to the earlier stage of slab break-off along the region during the early Eocene period.publishe

    Recent Developments and Characterization Techniques in 3D printing of Corneal Stroma Tissue

    Get PDF
    Corneal stroma has a significant function in normal visual function. The corneal stroma is vulnerable because of being the thickest part of the cornea, as it can be affected easily by infections or injuries. Any problems on corneal stroma can result in blindness. Donor shortage for corneal transplantation is one of the main issues in corneal transplantation. To address this issue, the corneal tissue engineering focuses on replacing injured tissues and repairing normal functions. Currently, there are no available, engineered corneal tissues for widely accepted routine clinical treatment, but new emerging 3D printing applications are being recognized as a promising option. Recent in vitro researches revealed that the biocompatibility and regeneration possessions of 3D-printed hydrogels outperformed conventional tissue engineering approaches. The goal of this review is to highlight the current developments in the characterization of 3D cell-free and bioprinted hydrogels

    Multi-user visible light communications: State-of-the-art and future directions

    Get PDF
    Visible light communications (VLC) builds upon the dual use of existing lighting infrastructure for wireless data transmission. VLC has recently gained interest as cost-effective, secure, and energy-efficient wireless access technology particularly for indoor user-dense environments. While initial studies in this area are mainly limited to single-user point-to-point links, more recent efforts have focused on multi-user VLC systems in an effort to transform VLC into a scalable and fully networked wireless technology. In this paper, we provide a comprehensive overview of multi-user VLC systems discussing the recent advances on multi-user precoding, multiple access, resource allocation, and mobility management. We further provide possible directions for future research in this emerging topic.King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia ; TÜBİTAKPublisher versio

    Antioxidant enzyme levels in intestinal and renal tissues after a 60-minute exercise in untrained mice

    Get PDF
    The present study was designed to determine the effects of exercise on the antioxidant enzymatic system and lipid peroxidation in small intestine and kidney, during the post-exercise period in untrained mice. Two days after the last adaptation running exercise, animals were ran on the treadmill for 60 min at 18 m/min, 5 degrees slope. After the acute exercise the animals were killed by cervical dislocation, immediately (0 h), 3 hours (3 h) and 24 hours (24 h) after the exercise. Control animals were killed without running exercise. Their proximal small intestinal and renal tissues were quickly removed. Changes in the concentration of thiobarbituric acid reactive substance (TBARS), as an index of lipid peroxidation, in intestine and kidney were studied in mice after the running exercise and in unexercised control group. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were determined in these tissues. Tissue SOD, GPx activities and TBARS level were not increase by the exercise in kidney. Intestinal SOD activity decreased after exercise (0 h and 3 h respectively, p<0.05, p<0.01) and returned to control levels. Intestinal GPx activity increased after exercise (0 h, p<0.05) and returned to control levels. There was no significant difference among groups in intestinal tissue TBARS levels. These findings could suggest that submaximal exercise may not cause oxidative stress in proximal small intestinal tissue and kidney

    The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis

    Full text link
    Astrometric observations performed by the Gaia Follow-Up Network for Solar System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects first detected by ESA's Gaia mission remain recoverable after their discovery. An observation campaign on the potentially hazardous asteroid (99 942) Apophis was conducted during the asteroid's latest period of visibility, from 12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall performance of the Gaia-FUN-SSO . The 2732 high quality astrometric observations acquired during the Gaia-FUN-SSO campaign were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric reduction process and the precision of the newly obtained measurements are discussed. We compare the residuals of astrometric observations that we obtained using this reduction process to data sets that were individually reduced by observers and accepted by the Minor Planet Center. We obtained 2103 previously unpublished astrometric positions and provide these to the scientific community. Using these data we show that our reduction of this astrometric campaign with a reliable stellar catalog substantially improves the quality of the astrometric results. We present evidence that the new data will help to reduce the orbit uncertainty of Apophis during its close approach in 2029. We show that uncertainties due to geolocations of observing stations, as well as rounding of astrometric data can introduce an unnecessary degradation in the quality of the resulting astrometric positions. Finally, we discuss the impact of our campaign reduction on the recovery process of newly discovered asteroids.Comment: Accepted for publication in A&

    Design, Synthesis, and Biological Evaluation of Pyridazinones Containing the (2-Fluorophenyl) Piperazine Moiety as Selective MAO-B Inhibitors

    Get PDF
    Twelve pyridazinones (T1-T12) containing the (2-fluorophenyl) piperazine moiety were designed, synthesized, and evaluated for monoamine oxidase (MAO) -A and -B inhibitory activities. T6 was found to be the most potent MAO-B inhibitor with an IC50 value of 0.013 µM, followed by T3 (IC50 = 0.039 µM). Inhibitory potency for MAO-B was more enhanced by meta bromo substitution (T6) than by para bromo substitution (T7). For para substitution, inhibitory potencies for MAO-B were as follows: -Cl (T3) &gt; -N(CH3)2 (T12) &gt; -OCH3 (T9) &gt; Br (T7) &gt; F (T5) &gt; -CH3 (T11) &gt; -H (T1). T6 and T3 efficiently inhibited MAO-A with IC50 values of 1.57 and 4.19 µM and had the highest selectivity indices (SIs) for MAO-B (120.8 and 107.4, respectively). T3 and T6 were found to be reversible and competitive inhibitors of MAO-B with Ki values of 0.014 and 0.0071, respectively. Moreover, T6 was less toxic to healthy fibroblast cells (L929) than T3. Molecular docking simulations with MAO binding sites returned higher docking scores for T6 and T3 with MAO-B than with MAO-A. These results suggest that T3 and T6 are selective, reversible, and competitive inhibitors of MAO-B and should be considered lead candidates for the treatment of neurodegenerative disorders like Alzheimer's disease
    corecore