26 research outputs found

    Role of cytoskeletal abnormalities in the neuropathology and pathophysiology of type I lissencephaly

    Get PDF
    Type I lissencephaly or agyria-pachygyria is a rare developmental disorder which results from a defect of neuronal migration. It is characterized by the absence of gyri and a thickening of the cerebral cortex and can be associated with other brain and visceral anomalies. Since the discovery of the first genetic cause (deletion of chromosome 17p13.3), six additional genes have been found to be responsible for agyria–pachygyria. In this review, we summarize the current knowledge concerning these genetic disorders including clinical, neuropathological and molecular results. Genetic alterations of LIS1, DCX, ARX, TUBA1A, VLDLR, RELN and more recently WDR62 genes cause migrational abnormalities along with more complex and subtle anomalies affecting cell proliferation and differentiation, i.e., neurite outgrowth, axonal pathfinding, axonal transport, connectivity and even myelination. The number and heterogeneity of clinical, neuropathological and radiological defects suggest that type I lissencephaly now includes several forms of cerebral malformations. In vitro experiments and mutant animal studies, along with neuropathological abnormalities in humans are of invaluable interest for the understanding of pathophysiological mechanisms, highlighting the central role of cytoskeletal dynamics required for a proper achievement of cell proliferation, neuronal migration and differentiation

    Neighboring group stabilization by sigma-holes

    No full text
    We have used density-functional theory to investigate the neighboring-group stabilization of iodine, arsenic, and phosphorus-centered oxyanion moieties in species such as deprotonated 2-iodoxybenzoic acid (IBX) and its analogs. The magnitudes of different stabilizing effects and further candidates for analogous stabilization are analyzed. © Springer-Verlag 200

    Reactivity and Environmental Factors

    No full text
    Hydrated mineral trioxide aggregate (MTA) is composed of calcium silicate hydrate, calcium hydroxide, ettringite, monosulphate and bismuth oxide together with unreacted tricalcium and dicalcium silicate. The presence of calcium hydroxide, which is usually leached out of the material, renders MTA reactive and thus susceptible to changes as a result of the environment in which it is placed. The specific alterations to the material will vary depending on its use and thus its relationship with other materials, tissues and fluids
    corecore