308 research outputs found
Pain and mental health - separate and joint associations with sickness absence among young employees
Peer reviewe
Magneto-polarisability of mesoscopic systems
In order to understand how screening is modified by electronic interferences
in a mesoscopic isolated system, we have computed both analytically and
numerically the average thermodynamic and time dependent polarisabilities of
two dimensional mesoscopic samples in the presence of an Aharonov-Bohm flux.
Two geometries have been considered: rings and squares. Mesoscopic correction
to screening are taken into account in a self consistent way, using the
response function formalism. The role of the statistical ensemble (canonical
and grand canonical), disorder and frequency have been investigated. We have
also computed first order corrections to the polarisability due to
electron-electron interactions. Our main results concern the diffusive regime.
In the canonical ensemble, there is no flux dependence polarisability when the
frequency is smaller than the level spacing. On the other hand, in the grand
canonical ensemble for frequencies larger than the mean broadening of the
energy levels (but still small compared to the level spacing), the
polarisability oscillates with flux, with the periodicity . The order of
magnitude of the effect is given by , where is the Thomas Fermi screening length, the
width of the rings or the size of the squares and their average
dimensionless conductance. This magnetopolarisability of Aharonov-Bohm rings
has been recently measured experimentally \cite{PRL_deblock00} and is in good
agreement with our grand canonical result.Comment: 12 pages, 10 figures, revte
Smoothed universal correlations in the two-dimensional Anderson model
We report on calculations of smoothed spectral correlations in the
two-dimensional Anderson model for weak disorder. As pointed out in (M.
Wilkinson, J. Phys. A: Math. Gen. 21, 1173 (1988)), an analysis of the
smoothing dependence of the correlation functions provides a sensitive means of
establishing consistency with random matrix theory. We use a semiclassical
approach to describe these fluctuations and offer a detailed comparison between
numerical and analytical calculations for an exhaustive set of two-point
correlation functions. We consider parametric correlation functions with an
external Aharonov-Bohm flux as a parameter and discuss two cases, namely broken
time-reversal invariance and partial breaking of time-reversal invariance.
Three types of correlation functions are considered: density-of-states,
velocity and matrix element correlation functions. For the values of smoothing
parameter close to the mean level spacing the semiclassical expressions and the
numerical results agree quite well in the whole range of the magnetic flux.Comment: 12 pages, 14 figures submitted to Phys. Rev.
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Photocatalytic Decomposition of Formic Acid on Mo2C-Containing Catalyst
Soluble components in the peripheral blood from experimental exposure of 14 healthy subjects to filtered air and wood smoke. Samples were collected before (pre), at 24 h and 44 h after exposure, to air and wood smoke. Data are given as medians with interquartile range. (DOCX 62 kb
Planck Intermediate Results. IX. Detection of the Galactic haze with Planck
Using precise full-sky observations from Planck, and applying several methods
of component separation, we identify and characterize the emission from the
Galactic "haze" at microwave wavelengths. The haze is a distinct component of
diffuse Galactic emission, roughly centered on the Galactic centre, and extends
to |b| ~35 deg in Galactic latitude and |l| ~15 deg in longitude. By combining
the Planck data with observations from the WMAP we are able to determine the
spectrum of this emission to high accuracy, unhindered by the large systematic
biases present in previous analyses. The derived spectrum is consistent with
power-law emission with a spectral index of -2.55 +/- 0.05, thus excluding
free-free emission as the source and instead favouring hard-spectrum
synchrotron radiation from an electron population with a spectrum (number
density per energy) dN/dE ~ E^-2.1. At Galactic latitudes |b|<30 deg, the
microwave haze morphology is consistent with that of the Fermi gamma-ray "haze"
or "bubbles," indicating that we have a multi-wavelength view of a distinct
component of our Galaxy. Given both the very hard spectrum and the extended
nature of the emission, it is highly unlikely that the haze electrons result
from supernova shocks in the Galactic disk. Instead, a new mechanism for
cosmic-ray acceleration in the centre of our Galaxy is implied.Comment: 15 pages, 9 figures, submitted to Astronomy and Astrophysic
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
Planck Intermediate Results. IV. The XMM-Newton validation programme for new Planck galaxy clusters
We present the final results from the XMM-Newton validation follow-up of new
Planck galaxy cluster candidates. We observed 15 new candidates, detected with
signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck
survey. The candidates were selected using ancillary data flags derived from
the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the
aim of pushing into the low SZ flux, high-z regime and testing RASS flags as
indicators of candidate reliability. 14 new clusters were detected by XMM,
including 2 double systems. Redshifts lie in the range 0.2 to 0.9, with 6
clusters at z>0.5. Estimated M500 range from 2.5 10^14 to 8 10^14 Msun. We
discuss our results in the context of the full XMM validation programme, in
which 51 new clusters have been detected. This includes 4 double and 2 triple
systems, some of which are chance projections on the sky of clusters at
different z. We find that association with a RASS-BSC source is a robust
indicator of the reliability of a candidate, whereas association with a FSC
source does not guarantee that the SZ candidate is a bona fide cluster.
Nevertheless, most Planck clusters appear in RASS maps, with a significance
greater than 2 sigma being a good indication that the candidate is a real
cluster. The full sample gives a Planck sensitivity threshold of Y500 ~ 4 10^-4
arcmin^2, with indication for Malmquist bias in the YX-Y500 relation below this
level. The corresponding mass threshold depends on z. Systems with M500 > 5
10^14 Msun at z > 0.5 are easily detectable with Planck. The newly-detected
clusters follow the YX-Y500 relation derived from X-ray selected samples.
Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray
luminosity on average for their mass. There is no indication of departure from
standard self-similar evolution in the X-ray versus SZ scaling properties.
(abridged)Comment: accepted by A&
Influence of wood species on toxicity of log-wood stove combustion aerosols: A parallel animal and air-liquid interface cell exposure study on spruce and pine smoke
Background
Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques.
Methods
We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6âJ mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome.
Results
We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7â±â6.5âmgâmââ3, 41âmgâMJ) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3â±â5.1âmgâmââ3, 26âmgâMJââ1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments.
Conclusions
Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects
- âŠ