17 research outputs found

    Chimeric piggyBac transposases for genomic targeting in human cells.

    Get PDF
    Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy

    Hyperactive self-inactivating piggyBac for transposase-enhanced pronuclear microinjection transgenesis

    Full text link
    We have developed a unique method for mouse transgenesis. The transposase-enhanced pronuclear microinjection (PNI) technique described herein uses the hyperactive piggyBac transposase to insert a large transgene into the mouse genome. This procedure increased transgene integration efficiency by fivefold compared with conventional PNI or intracytoplasmic sperm injection-mediated transgenesis. Our data indicate that the transposase-enhanced PNI technique additionally requires fewer embryos to be microinjected than traditional methods to obtain transgenic animals. This transposase-mediated approach is also very efficient for single-cell embryo cytoplasmic injections, offering an easy-to-implement transgenesis method to the scientific community

    Photoaging of skin : a functional genomics approach

    Get PDF
    Thesis (Ph. D.)--University of Hawaii at Manoa, 2004.Includes bibliographical references (leaves 198-219).Also available by subscription via World Wide Webxvii, 219 leaves, bound ill., some col. 29 c

    Selenoprotein K Increases Efficiency of DHHC6 Catalyzed Protein Palmitoylation by Stabilizing the Acyl-DHHC6 Intermediate

    No full text
    Selenoprotein K (SELENOK) is a selenocysteine (Sec)-containing protein localized in the endoplasmic reticulum (ER) membrane where it interacts with the DHHC6 (where single letter symbols represent Asp-His-His-Cys amino acids) enzyme to promote protein acyl transferase (PAT) reactions. PAT reactions involve the DHHC enzymatic capture of palmitate via a thioester bond to cysteine (Cys) residues that form an unstable palmitoyl-DHHC intermediate, followed by transfer of palmitate to Cys residues of target proteins. How SELENOK facilitates this reaction has not been determined. Splenocyte microsomal preparations from wild-type mice versus SELENOK knockout mice were used to establish PAT assays and showed decreased PAT activity (~50%) under conditions of SELENOK deficiency. Using recombinant, soluble versions of DHHC6 along with SELENOK containing Sec92, Cys92, or alanine (Ala92), we evaluated the stability of the acyl-DHHC6 intermediate and its capacity to transfer the palmitate residue to Cys residues on target peptides. Versions of SELENOK containing either Ala or Cys residues in place of Sec were equivalently less effective than Sec at stabilizing the acyl-DHHC6 intermediate or promoting PAT activity. These data suggest that Sec92 in SELENOK serves to stabilize the palmitoyl-DHHC6 intermediate by reducing hydrolyzation of the thioester bond until transfer of the palmitoyl group to the Cys residue on the target protein can occur

    Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination

    No full text
    The mammalian sex-determining factor SRY comprises a conserved high-mobility group (HMG) box DNA-binding domain and poorly conserved regions outside the HMG box. Mouse Sry is unusual in that it includes a C-terminal polyglutamine (polyQ) tract that is absent in nonrodent SRY proteins, and yet, paradoxically, is essential for male sex determination. To dissect the molecular functions of this domain, we generated a series of Sry mutants, and studied their biochemical properties in cell lines and transgenic mouse embryos. Sry protein lacking the polyQ domain was unstable, due to proteasomal degradation. Replacing this domain with irrelevant sequences stabilized the protein but failed to restore Sry's ability to up-regulate its key target gene SRY-box 9 (Sox9) and its sex-determining function in vivo. These functions were restored only when a VP16 transactivation domain was substituted. We conclude that the polyQ domain has important roles in protein stabilization and transcriptional activation, both of which are essential for male sex determination in mice. Our data disprove the hypothesis that the conserved HMG box domain is the only functional domain of Sry, and highlight an evolutionary paradox whereby mouse Sry has evolved a novel bifunctional module to activate Sox9 directly, whereas SRY proteins in other taxa, including humans, seem to lack this ability, presumably making them dependent on partner proteins(s) to provide this function
    corecore