37 research outputs found

    Work in Hypoxic Conditions-Consensus Statement of the Medical Commission of the Union Internationale des Associations d'Alpinisme (UIAA MedCom)

    Get PDF
    Objectives: The Commission gives recommendations on how to provide health and safety for employees in different kinds of low oxygen atmospheres. So far, no recommendations exist that take into account the several factors we have outlined in this report. Methods: The health and safety recommendations of several countries were analysed for their strength and deficiencies. The scientific literature was checked (Medline, etc.) and evaluated for relevance of the topic. Typical situations of work in hypoxia were defined and their specific risks described. Specific recommendations are provided for any of these situations. Results: We defined four main groups with some subgroups (main risk in brackets): short exposure (pressure change), limited exposure (acute altitude disease), expatriates (chronic altitude disease), and high-altitude populations (re-entry pulmonary oedema). For healthy unacclimatized persons, an acute but limited exposure down to 13% O2 does not cause a health risk. Employees should be advised to leave hypoxic areas for any break, if possible. Detailed advice is given for any other situation and pre-existing diseases. Conclusions: If the specific risk of the respective type of hypoxia is taken into account, a pragmatic approach to provide health and safety for employees is possible. In contrast to other occupational exposures, a repeated exposure as often as possible is of benefit as it causes partial acclimatization. The consensus statement was approved by written consent in lieu of a meeting in July 200

    Delayed Appearance of High Altitude Retinal Hemorrhages

    Get PDF
    When closely examined, a very large amount of climbers exhibit retinal hemorrhages during exposure to high altitudes. The incidence of retinal hemorrhages may be greater than previously appreciated as a definite time lag was observed between highest altitude reached and development of retinal bleeding. Retinal hemorrhages should not be considered warning signs of impending severe altitude illness due to their delayed appearance

    Morphological Brain Changes after Climbing to Extreme Altitudes-A Prospective Cohort Study.

    Get PDF
    BACKGROUND Findings of cerebral cortical atrophy, white matter lesions and microhemorrhages have been reported in high-altitude climbers. The aim of this study was to evaluate structural cerebral changes in a large cohort of climbers after an ascent to extreme altitudes and to correlate these findings with the severity of hypoxia and neurological signs during the climb. METHODS Magnetic resonance imaging (MRI) studies were performed in 38 mountaineers before and after participating in a high altitude (7126m) climbing expedition. The imaging studies were assessed for occurrence of new WM hyperintensities and microhemorrhages. Changes of partial volume estimates of cerebrospinal fluid, grey matter, and white matter were evaluated by voxel-based morphometry. Arterial oxygen saturation and acute mountain sickness scores were recorded daily during the climb. RESULTS On post-expedition imaging no new white matter hyperintensities were observed. Compared to baseline testing, we observed a significant cerebrospinal fluid fraction increase (0.34% [95% CI 0.10-0.58], p = 0.006) and a white matter fraction reduction (-0.18% [95% CI -0.32--0.04], p = 0.012), whereas the grey matter fraction remained stable (0.16% [95% CI -0.46-0.13], p = 0.278). Post-expedition imaging revealed new microhemorrhages in 3 of 15 climbers reaching an altitude of over 7000m. Affected climbers had significantly lower oxygen saturation values but not higher acute mountain sickness scores than climbers without microhemorrhages. CONCLUSIONS A single sojourn to extreme altitudes is not associated with development of focal white matter hyperintensities and grey matter atrophy but leads to a decrease in brain white matter fraction. Microhemorrhages indicative of substantial blood-brain barrier disruption occur in a significant number of climbers attaining extreme altitudes

    Recruitment of non‐perfused sublingual capillaries increases microcirculatory oxygen extraction capacity throughout ascent to 7126 m

    Full text link
    KEY POINTS: A physiological response to increase microcirculatory oxygen extraction capacity at high altitude is to recruit capillaries. In the present study, we report that high altitude-induced sublingual capillary recruitment is an intrinsic mechanism of the sublingual microcirculation that is independent of changes in cardiac output, arterial blood pressure or systemic vascular hindrance. Using a topical nitroglycerin challenge to the sublingual microcirculation, we show that high altitude-related capillary recruitment is a functional response of the sublingual microcirculation as opposed to an anatomical response associated with angiogenesis. The concurrent presence of a low capillary density and high microvascular reactivity to topical nitroglycerin at sea level was found to be associated with a failure to reach the summit, whereas the presence of a high baseline capillary density with the ability to further increase maximum recruitable capillary density upon ascent to an extreme altitude was associated with summit success. ABSTRACT: A high altitude (HA) stay is associated with an increase in sublingual capillary total vessel density (TVD), suggesting microvascular recruitment. We hypothesized that microvascular recruitment occurs independent of cardiac output changes, that it relies on haemodynamic changes within the microcirculation as opposed to structural changes and that microcirculatory function is related to individual performance at HA. In 41 healthy subjects, sublingual handheld vital microscopy and echocardiography were performed at sea level (SL), as well as at 6022 m (C2) and 7042 m (C3), during ascent to 7126 m within 21 days. Sublingual topical nitroglycerin was applied to measure microvascular reactivity and maximum recruitable TVD (TVDNG ). HA exposure decreased resting cardiac output, whereas TVD (mean ± SD) increased from 18.81 ± 3.92 to 20.92 ± 3.66 and 21.25 ± 2.27 mm mm-2 (P < 0.01). The difference between TVD and TVDNG was 2.28 ± 4.59 mm mm-2 at SL (P < 0.01) but remained undetectable at HA. Maximal TVDNG was observed at C3. Those who reached the summit (n = 15) demonstrated higher TVD at SL (P < 0.01), comparable to TVDNG in non-summiters (n = 21) at SL and in both groups at C2. Recruitment of sublingual capillary TVD to increase microcirculatory oxygen extraction capacity at HA was found to be an intrinsic mechanism of the microcirculation independent of cardiac output changes. Microvascular reactivity to topical nitroglycerin demonstrated that HA-related capillary recruitment is a functional response as opposed to a structural change. The performance of the vascular microcirculation needed to reach the summit was found to be associated with a higher TVD at SL and the ability to further increase TVDNG upon ascent to extreme altitude

    Changes in mitochondrial enzymatic activities of monocytes during prolonged hypobaric hypoxia and influence of antioxidants: A randomized controlled study

    No full text
    OBJECTIVES Exposure to high altitudes is associated with oxidative cellular damage due to the increased level of reactive oxygen and nitrogen species and altered activity of antioxidant systems. Subjects were submitted to prolonged hypoxia, to evaluate changes in mitochondrial enzyme activities of monocytes and their attenuation by supplementation with antioxidants. METHODS Twelve subjects were randomly assigned to receive antioxidant supplements or placebo prior to and during an expedition to Pik Lenin (7145 m). Monocytes were isolated from blood samples to determine the activity of mitochondrial enzymes cytochrome c oxidase and citrate synthase at 490 m (baseline) and at the altitudes of 3550 m, 4590 m, and 5530 m. RESULTS An increase in citrate synthase activity at all altitudes levels was observed. Hypoxia induced an increase in the activity of cytochrome c oxidase only at 4590 m. Neither citrate synthase activity nor cytochrome c oxidase activity differed between the subjects receiving antioxidant supplements and those receiving placebo. CONCLUSIONS Hypoxia leads to an increase in citrate synthase activity of monocyte mitochondria as a marker of mitochondrial mass, which is not modified by antioxidant supplementation. The increase in mitochondrial mass may represent a compensatory mechanism to preserve oxidative phosphorylation of monocytes at high altitudes

    Increased endothelial microparticles and oxidative stress at extreme altitude.

    No full text
    PURPOSE Hypoxia and oxidative stress affect endothelial function. Endothelial microparticles (MP) are established measures of endothelial dysfunction and influence vascular reactivity. To evaluate the effects of hypoxia and antioxidant supplementation on endothelial MP profiles, a double-blind, placebo-controlled trial, during a high altitude expedition was performed. METHODS 29 participants were randomly assigned to a treatment group (n = 14), receiving vitamin E, C, A, and N-acetylcysteine daily, and a control group (n = 15), receiving placebo. Blood samples were obtained at 490 m (baseline), 3530, 4590, and 6210 m. A sensitive tandem mass spectrometry method was used to measure 8-iso-prostaglandin F2α and hydroxyoctadecadienoic acids as markers of oxidative stress. Assessment of MP profiles including endothelial activation markers (CD62+MP and CD144+MP) and cell apoptosis markers (phosphatidylserine+MP and CD31+MP) was performed using a standardized flow cytometry-based protocol. RESULTS 15 subjects reached all altitudes and were included in the final analysis. Oxidative stress increased significantly at altitude. No statistically significant changes were observed comparing baseline to altitude measurements of phosphatidylserine expressing MP (p = 0.1718) and CD31+MP (p = 0.1305). Compared to baseline measurements, a significant increase in CD62+MP (p = 0.0079) and of CD144+MP was detected (p = 0.0315) at high altitudes. No significant difference in any MP level or oxidative stress markers were found between the treatment and the control group. CONCLUSION Hypobaric hypoxia is associated with increased oxidative stress and induces a significant increase in CD62+ and CD144+MP, whereas phosphatidylserine+MP and CD31+MP remain unchanged. This indicates that endothelial activation rather than an apoptosis is the primary factor of hypoxia induced endothelial dysfunction

    Oxidative stress in hypobaric hypoxia and influence on vessel-tone modifying mediators

    Get PDF
    Increased pulmonary artery pressure is a well-known phenomenon of hypoxia and is seen in patients with chronic pulmonary diseases, and also in mountaineers on high altitude expedition. Different mediators are known to regulate pulmonary artery vessel tone. However, exact mechanisms are not fully understood and a multimodal process consisting of a whole panel of mediators is supposed to cause pulmonary artery vasoconstriction. We hypothesized that increased hypoxemia is associated with an increase in vasoconstrictive mediators and decrease of vasodilatators leading to a vasoconstrictive net effect. Furthermore, we suggested oxidative stress being partly involved in changement of these parameters. Oxygen saturation (Sao2) and clinical parameters were assessed in 34 volunteers before and during a Swiss research expedition to Mount Muztagh Ata (7549 m) in Western China. Blood samples were taken at four different sites up to an altitude of 6865 m. A mass spectrometry-based targeted metabolomic platform was used to detect multiple parameters, and revealed functional impairment of enzymes that require oxidation-sensitive cofactors. Specifically, the tetrahydrobiopterin (BH4)-dependent enzyme nitric oxide synthase (NOS) showed significantly lower activities (citrulline-to-arginine ratio decreased from baseline median 0.21 to 0.14 at 6265 m), indicating lower NO availability resulting in less vasodilatative activity. Correspondingly, an increase in systemic oxidative stress was found with a significant increase of the percentage of methionine sulfoxide from a median 6% under normoxic condition to a median level of 30% (p<0.001) in camp 1 at 5533 m. Furthermore, significant increase in vasoconstrictive mediators (e.g., tryptophan, serotonin, and peroxidation-sensitive lipids) were found. During ascent up to 6865 m, significant altitude-dependent changes in multiple vessel-tone modifying mediators with excess in vasoconstrictive metabolites could be demonstrated. These changes, as well as highly significant increase in systemic oxidative stress, may be predictive for increase in acute mountain sickness score and changes in Sao2
    corecore