40 research outputs found

    High-throughput methods for characterizing the immune repertoire

    Get PDF
    Thesis (Ph. D. in Biomedical Engineering and Computational Biology)--Harvard-MIT Program in Health Sciences and Technology, February 2013."September 2012." Cataloged from PDF version of thesis.Includes bibliographical references (p. 147-160).The adaptive immune system is one of the primary mediators in almost every major human disease, including infections, cancer, autoimmunity, and inflammation-based disorders. It fundamentally functions as a molecular classifier, and stores a memory of its previous exposures. However, until recently, methods to unlock this information or to exploit its power in the form of new therapeutic antibodies or affinity reagents have been limited by the use of traditional, low-throughput technologies. In this thesis, we leverage recent advances in high-throughput DNA sequencing technology to develop new methods to characterize and probe the immune repertoire in unprecedented detail. We use this technology to 1) characterize the rapid dynamics of the immune repertoire in response to influenza vaccination, 2) characterize elite neutralizing antibodies to HIV, to better understand the constraints for designing an HIV vaccine, and 3) develop new methodologies for discovering auto-antigens, and assaying large libraries of protein antigens in general. We hope that these projects will serve as stepping-stones towards filling the gap left by low-throughput methods in the development of antibody technologies.by Uri Laserson.Ph.D.in Biomedical Engineering and Computational Biolog

    Predicting candidate genomic sequences that correspond to synthetic functional RNA motifs

    Get PDF
    Riboswitches and RNA interference are important emerging mechanisms found in many organisms to control gene expression. To enhance our understanding of such RNA roles, finding small regulatory motifs in genomes presents a challenge on a wide scale. Many simple functional RNA motifs have been found by in vitro selection experiments, which produce synthetic target-binding aptamers as well as catalytic RNAs, including the hammerhead ribozyme. Motivated by the prediction of Piganeau and Schroeder [(2003) Chem. Biol., 10, 103–104] that synthetic RNAs may have natural counterparts, we develop and apply an efficient computational protocol for identifying aptamer-like motifs in genomes. We define motifs from the sequence and structural information of synthetic aptamers, search for sequences in genomes that will produce motif matches, and then evaluate the structural stability and statistical significance of the potential hits. Our application to aptamers for streptomycin, chloramphenicol, neomycin B and ATP identifies 37 candidate sequences (in coding and non-coding regions) that fold to the target aptamer structures in bacterial and archaeal genomes. Further energetic screening reveals that several candidates exhibit energetic properties and sequence conservation patterns that are characteristic of functional motifs. Besides providing candidates for experimental testing, our computational protocol offers an avenue for expanding natural RNA's functional repertoire

    RAG: RNA-As-Graphs web resource

    Get PDF
    BACKGROUND: The proliferation of structural and functional studies of RNA has revealed an increasing range of RNA's structural repertoire. Toward the objective of systematic cataloguing of RNA's structural repertoire, we have recently described the basis of a graphical approach for organizing RNA secondary structures, including existing and hypothetical motifs. DESCRIPTION: We now present an RNA motif database based on graph theory, termed RAG for RNA-As-Graphs, to catalogue and rank all theoretically possible, including existing, candidate and hypothetical, RNA secondary motifs. The candidate motifs are predicted using a clustering algorithm that classifies RNA graphs into RNA-like and non-RNA groups. All RNA motifs are filed according to their graph vertex number (RNA length) and ranked by topological complexity. CONCLUSIONS: RAG's quantitative cataloguing allows facile retrieval of all classes of RNA secondary motifs, assists identification of structural and functional properties of user-supplied RNA sequences, and helps stimulate the search for novel RNAs based on predicted candidate motifs

    AIRR Community Standardized Representations for Annotated Immune Repertoires

    Get PDF
    Increased interest in the immune system's involvement in pathophysiological phenomena coupled with decreased DNA sequencing costs have led to an explosion of antibody and T cell receptor sequencing data collectively termed “adaptive immune receptor repertoire sequencing” (AIRR-seq or Rep-Seq). The AIRR Community has been actively working to standardize protocols, metadata, formats, APIs, and other guidelines to promote open and reproducible studies of the immune repertoire. In this paper, we describe the work of the AIRR Community's Data Representation Working Group to develop standardized data representations for storing and sharing annotated antibody and T cell receptor data. Our file format emphasizes ease-of-use, accessibility, scalability to large data sets, and a commitment to open and transparent science. It is composed of a tab-delimited format with a specific schema. Several popular repertoire analysis tools and data repositories already utilize this AIRR-seq data format. We hope that others will follow suit in the interest of promoting interoperable standards

    A Comprehensive Phenotypic and Functional Immune Analysis Unravels Circulating Anti-Phospholipase A2 Receptor Antibody Secreting Cells in Membranous Nephropathy Patients

    Get PDF
    Introduction: Primary membranous nephropathy (MN) is characterized by the presence of antipodocyte antibodies, but studies describing phenotypic and functional abnormalities in circulating lymphocytes are limited. Methods: We analyzed 68 different B- and T-cell subsets using flow cytometry in 30 MN patients (before initiating immunosuppression) compared with 31 patients with non-immune-mediated chronic kidney disease (CKD) and 12 healthy individuals. We also measured 19 serum cytokines in MN patients and in healthy controls. Lastly, we quantified the ex vivo production of phospholipase A2 receptor (PLA2R)-specific IgG by plasmablasts (measuring antibodies in culture supernatants and by the newly developed FluoroSpot assay [AutoImmun Diagnostika, Strasberg, Germany]) and assessed the circulating antibody repertoire by phage immunoprecipitation sequencing (PhIP-Seq). Results: After adjusting for multiple testing, plasma cells and regulatory B cells (BREG) were significantly higher (P < 0.05) in MN patients compared with both control groups. The percentages of circulating plasma cells correlated with serum anti-PLA2R antibody levels (P = 0.042) and were associated with disease activity. Ex vivo-expanded PLA2R-specific IgG-producing plasmablasts generated from circulating PLA2R-specific memory B cells (mBCs) correlated with serum anti-PLA2R IgG antibodies (P < 0.001) in MN patients. Tumor necrosis factor-alpha (TNF-alpha) was the only significantly increased cytokine in MN patients (P < 0.05), whereas there was no significant difference across study groups in the autoantibody and antiviral antibody repertoire. Conclusion: This extensive phenotypic and functional immune characterization shows that autoreactive plasma cells are present in the circulation of MN patients, providing a new therapeutic target and a candidate biomarker of disease activity

    Advanced analytics with Spark

    No full text
    corecore