86 research outputs found

    Demonstrating Reduced Gravity

    Get PDF
    A miniature drop tower, Reduced-Gravity Demonstrator is developed to illustrate the effects of gravity on a variety of phenomena including the way fluids flow, flames burn, and mechanical systems (such as pendulum) behave. A schematic and description of the demonstrator and payloads are given, followed by suggestions for how one can build his (her) own

    Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    Get PDF
    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops

    A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    Get PDF
    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01

    ethical reasons and political commitment

    Get PDF
    Political commitments to resist oppression play a central role in the moral lives of many people. Such commitments are also a source of ethical reasons. They influence and organize ethical beliefs, emotions and reasons in an ongoing way. Political commitments to address oppression often contain a concern for the dignity and well-being of others and the objects of political commitments often have value, according to ideal moral theories, such as Kantian and utilitarian theory. However, ideal moral theories do not fully explain the ethical reasons political commitments engender. First, ideal moral theories do not explain the normative priority that agents give to politically committed ethical reasons. Their profound effect on a politically committed agent’s ethical deliberation and choice and the precedence they are given over other ends cannot be wholly understood through the moral obligations within ideal theories. Second, although politically committed reasons are valuable in ideal theory for the benefits they bring to others, they are not fungible with other reasons ideal theory would regard as having equal ethical value. A person might substitute another beneficial humanitarian aim for that to which she is politically committed and nevertheless regard herself as having done a morally wrong thing for failing or betraying her commitment. Politically committed ethical reasons are also motivated and informed by the social location of agents and their relationship to structures of oppression. Although there are universal ethical reasons to oppose oppression, this means that some of a person’s actual ethical reasons will be irreducibly particular

    Effects of C/O Ratio and Temperature on Sooting Limits of Spherical Diffusion Flames

    Get PDF
    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, residence time and scalar dissipation rate. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with scalar dissipation rate lower than 2/s were found to have temperatures near 1400 K where C/O = 0.51, whereas flames with greater scalar dissipation rate required increased temperatures. This finding was valid across a broad range of fuel and oxidizer compositions and convection directions

    Effects of Lewis Number on Temperatures of Spherical Diffusion Flames

    Get PDF
    Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%

    Emergency percutaneous needle decompression for tension pneumoperitoneum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tension pneumoperitoneum as a complication of iatrogenic bowel perforation during endoscopy is a dramatic condition in which intraperitoneal air under pressure causes hemodynamic and ventilatory compromise. Like tension pneumothorax, urgent intervention is required. Immediate surgical decompression though is not always possible due to the limitations of the preclinical management and sometimes to capacity constraints of medical staff and equipment in the clinic.</p> <p>Methods</p> <p>This is a retrospective analysis of cases of pneumoperitoneum and tension pneumoperitoneum due to iatrogenic bowel perforation. All patients admitted to our surgical department between January 2005 and October 2010 were included. Tension pneumoperitoneum was diagnosed in those patients presenting signs of hemodynamic and ventilatory compromise in addition to abdominal distension.</p> <p>Results</p> <p>Between January 2005 and October 2010 eleven patients with iatrogenic bowel perforation were admitted to our surgical department. The mean time between perforation and admission was 36 ± 14 hrs (range 30 min - 130 hrs), between ER admission and begin of the operation 3 hrs and 15 min ± 47 min (range 60 min - 9 hrs). Three out of eleven patients had clinical signs of tension pneumoperitoneum. In those patients emergency percutaneous needle decompression was performed with a 16G venous catheter. This improved significantly the patients' condition (stabilization of vital signs, reducing jugular vein congestion), bridging the time to the start of the operation.</p> <p>Conclusions</p> <p>Hemodynamical and respiratory compromise in addition to abdominal distension shortly after endoscopy are strongly suggestive of tension pneumoperitoneum due to iatrogenic bowel perforation. This is a rare but life threatening condition and it can be managed in a preclinical and clinical setting with emergency percutaneous needle decompression like tension pneumothorax. Emergency percutaneous decompression is no definitive treatment, only a method to bridge the time gap to definitive surgical repair.</p

    Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera)

    Get PDF
    When smelling an odorant mixture, olfactory systems can be analytical (i.e. extract information about the mixture elements) or synthetic (i.e. creating a configural percept of the mixture). Here, we studied elemental and configural mixture coding in olfactory neurons of the honeybee antennal lobe, local neurons in particular. We conducted intracellular recordings and stimulated with monomolecular odorants and their coherent or incoherent binary mixtures to reproduce a temporally dynamic environment. We found that about half of the neurons responded as ‘elemental neurons’, i.e. responses evoked by mixtures reflected the underlying feature information from one of the components. The other half responded as ‘configural neurons’, i.e. responses to mixtures were clearly different from responses to their single components. Elemental neurons divided in late responders (above 60 ms) and early responder neurons (below 60 ms), whereas responses of configural coding neurons concentrated in-between these divisions. Latencies of neurons with configural responses express a tendency to be faster for coherent stimuli which implies employment in different processing circuits
    corecore