1,880 research outputs found
Gravitational GUT Breaking and the GUT-Planck Hierarchy
It is shown that non-renormalizable gravitational interactions in the Higgs
sector of supersymmetric grand unified theories (GUT's) can produce the
breaking of the unifying gauge group at the GUT scale ~GeV. Such a breaking offers an attractive alternative to the
traditional method where the superheavy GUT scale mass parameters are added ad
hoc into the theory. The mechanism also offers a natural explanation for the
closeness of the GUT breaking scale to the Planck scale. A study of the minimal
SU(5) model endowed with this mechanism is presented and shown to be
phenomenologically viable. A second model is examined where the Higgs doublets
are kept naturally light as Goldstone modes. This latter model also achieves
breaking of at but cannot easily satisfy the current
experimental proton decay bound.Comment: 11 pages, REVTeX, 1 figure included as an uuencoded Z-compressed
PostScript file. Our Web page at
http://physics.tamu.edu/~urano/research/gutplanck.html contains ready to
print PostScript version (with figures) as well as color version of plot
Targeting cellular calcium homeostasis to prevent cytokine-mediated beta cell death
AbstractPro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.</jats:p
"Round Up the Usual Suspects": A Comment on Nonexistent Plant G Protein-Coupled Receptors
An evolutionary argument supports the conclusion that plants do not have G protein coupled receptors
Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex
Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1
The infinite-range quantum random Heisenberg magnet
We study with exact diagonalization techniques the Heisenberg model for a
system of SU(2) spins with S=1/2 and random infinite-range exchange
interactions. We calculate the critical temperature T_g for the spin-glass to
paramagnetic transition. We obtain T_g ~ 0.13, in good agreement with previous
quantum Monte Carlo and analytical estimates. We provide a detailed picture for
the different kind of excitations which intervene in the dynamical response
chi''(w,T) at T=0 and analyze their evolution as T increases. We also calculate
the specific heat Cv(T). We find that it displays a smooth maximum at TM ~
0.25, in good qualitative agreement with experiments. We argue that the fact
that TM>Tg is due to a quantum disorder effect.Comment: 17 pages, 14 figure
Structural Ordering and Symmetry Breaking in Cd_2Re_2O_7
Single crystal X-ray diffraction measurements have been carried out on
Cd_2Re_2O_7 near and below the phase transition it exhibits at Tc' ~195 K.
Cd_2Re_2O_7 was recently discovered as the first, and to date only,
superconductor with the cubic pyrochlore structure. Superlattice Bragg peaks
show an apparently continuous structural transition at Tc', however the order
parameter displays anomalously slow growth to ~Tc'/10, and resolution limited
critical-like scattering is seen above Tc'. High resolution measurements show
the high temperature cubic Bragg peaks to split on entering the low temperature
phase, indicating a (likely tetragonal) lowering of symmetry below Tc'.Comment: 4 pages, 4 figure
The role of ECL2 in CGRP receptor activation: a combined modelling and experimental approach
The calcitonin gene-related peptide (CGRP) receptor is a complex of a calcitonin receptor-like receptor (CLR), which is a family B G-protein-coupled receptor (GPCR) and receptor activity modifying protein 1. The role of the second extracellular loop (ECL2) of CLR in binding CGRP and coupling to Gs was investigated using a combination of mutagenesis and modelling. An alanine scan of residues 271–294 of CLR showed that the ability of CGRP to produce cAMP was impaired by point mutations at 13 residues; most of these also impaired the response to adrenomedullin (AM). These data were used to select probable ECL2-modelled conformations that are involved in agonist binding, allowing the identification of the likely contacts between the peptide and receptor. The implications of the most likely structures for receptor activation are discussed.</jats:p
Effect of toroidal field ripple on plasma rotation in JET
Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect
Hubbard chains network on corner-sharing tetrahedra: origin of the heavy fermion state in LiV_2O_4
We investigate the Hubbard chains network model defined on corner-sharing
tetrahedra (the pyrochlore lattice) which is a possible microscopic model for
the heavy fermion state of LiV_2O_4. Based upon this model, we can explain
transport, magnetic, and thermodynamic properties of LiV_2O_4. We calculate the
spin susceptibility, and the specific heat coefficient, exploiting the Bethe
ansatz exact solution of the 1D Hubbard model and bosonization method. The
results are quite consistent with experimental observations. We obtain the
large specific heat coefficient .Comment: 5 pages, 2 figures, a postscript file of Figure 1 is not included, to
appear in Physical Review
Thermal and Electrical Properties of gamma-NaxCoO2 (0.70 < x < 0.78)
We have performed specific heat and electric resistivity measurements of
NaCoO (-0.78). Two anomalies have been observed in the
specific heat data for , corresponding to magnetic transitions at
K and K reported previously. In the electrical
resistivity, a steep decrease at and a bending-like variation at
(=120K for ) have been observed. Moreover, we have investigated
the -dependence of these parameters in detail. The physical properties of
this system are very sensitive to , and the inconsistent results of previous
reports can be explained by a small difference in . Furthermore, for a
higher value, a phase separation into Na-rich and Na-poor domains occurs as
we previously proposed, while for a lower value, from characteristic
behaviors of the specific heat and the electrical resistivity at the
low-temperature region, the system is expected to be in the vicinity of the
magnetic instability which virtually exists below .Comment: 4 pages (3 figures included) and an extra figure (gif), to be
published in J. Phys. Soc. Jpn. 73 (9) with possible minor revision
- …