43 research outputs found

    Two mechanisms drive pronuclear migration in mouse zygotes

    Get PDF
    A new life begins with the unification of the maternal and paternal chromosomes upon fertilization. The parental chromosomes first become enclosed in two separate pronuclei near the surface of the fertilized egg. The mechanisms that then move the pronuclei inwards for their unification are only poorly understood in mammals. Here, we report two mechanisms that act in concert to unite the parental genomes in fertilized mouse eggs. The male pronucleus assembles within the fertilization cone and is rapidly moved inwards by the flattening cone. Rab11a recruits the actin nucleation factors Spire and Formin-2 into the fertilization cone, where they locally nucleate actin and further accelerate the pronucleus inwards. In parallel, a dynamic network of microtubules assembles that slowly moves the male and female pronuclei towards the cell centre in a dynein-dependent manner. Both mechanisms are partially redundant and act in concert to unite the parental pronuclei in the zygote’s centre

    Curing of Plasmid pXO1 from Bacillus anthracis Using Plasmid Incompatibility

    Get PDF
    The large plasmid pXO1 encoding the anthrax toxin is important for the virulence of Bacillus anthracis. It is essential to cure pXO1 from B. anthracis to evaluate its role in the pathogenesis of anthrax infection. Because conventional methods for curing plasmids (e.g., curing agents or growth at elevated temperatures) can induce mutations in the host chromosomal DNA, we developed a specific and reliable method to eliminate pXO1 from B. anthracis using plasmid incompatibility. Three putative replication origins of pXO1 were inserted into a temperature-sensitive plasmid to generate three incompatible plasmids. One of the three plasmids successfully eliminated the large plasmid pXO1 from B. anthracis vaccine strain A16R and wild type strain A16. These findings provided additional information about the replication/partitioning of pXO1 and demonstrated that introducing a small incompatible plasmid can generate plasmid-cured strains of B. anthracis without inducing spontaneous mutations in the host chromosome

    Mechanisms of pronuclear migration in mammalian zygotes.

    No full text

    Functions of actin in mouse oocytes at a glance

    No full text
    Gametes undergo a specialized and reductional cell division termed meiosis. Female gametes (oocytes) undergo two rounds of meiosis; the first meiotic division produces the fertilizable egg, while the second meiotic division occurs upon fertilization. Both meiotic divisions are highly asymmetric, producing a large egg and small polar bodies. Actin takes over various essential function during oocyte meiosis, many of which commonly rely on microtubules in mitotic cells. Specifically, the actin network has been linked to long-range vesicle transport, nuclear positioning, spindle migration and anchorage, polar body extrusion and accurate chromosome segregation in mammalian oocytes. In this Cell Science at a Glance article and the accompanying poster, we summarize the many functions of the actin cytoskeleton in oocytes, with a focus on findings from the mouse model system

    Two guard cell mitogen-activated protein kinases, MPK9 and MPK12, function in methyl jasmonate-induced stomatal closure in Arabidopsis thaliana

    No full text
    Methyl jasmonate (MeJA) and abscisic acid (ABA) signalling cascades share several signalling components in guard cells. We previously showed that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signalling in Arabidopsis thaliana. In this study, we examined whether these two MAP kinases function in MeJA signalling using genetic mutants for MPK9 and MPK12 combined with a pharmacological approach. MeJA induced stomatal closure in mpk9-1 and mpk12-1 single mutants as well as wild-type plants, but not in mpk9-1 mpk12-1 double mutants. Consistently, the MAPKK inhibitor PD98059 inhibited the MeJA-induced stomatal closure in wild-type plants. MeJA elicited reactive oxygen species (ROS) production and cytosolic alkalisation in guard cells of the mpk9-1, mpk12-1 and mpk9-1 mpk12-1 mutants, as well in wild-type plants. Furthermore, MeJA triggered elevation of cytosolic Ca2+ concentration ([Ca2+](cyt)) in the mpk9-1 mpk12-1 double mutant as well as wild-type plants. Activation of S-type anion channels by MeJA was impaired in mpk9-1 mpk12-1. Together, these results indicate that MPK9 and MPK12 function upstream of S-type anion channel activation and downstream of ROS production, cytosolic alkalisation and [Ca2+](cyt) elevation in guard cell MeJA signalling, suggesting that MPK9 and MPK12 are key regulators mediating both ABA and MeJA signalling in guard cells116141sciescopu

    Modulation of Phase Shift between Wnt and Notch Signaling Oscillations Controls Mesoderm Segmentation

    No full text
    How signaling dynamics encode information is a central question in biology. During vertebrate development, dynamic Notch signaling oscillations control segmentation of the presomitic mesoderm (PSM). In mouse embryos, this molecular clock comprises signaling oscillations of several pathways, i.e., Notch, Wnt, and FGF signaling. Here, we directly address the role of the relative timing between Wnt and Notch signaling oscillations during PSM patterning. To this end, we developed a new experimental strategy using microfluidics-based entrainment that enables specific control of the rhythm of segmentation clock oscillations. Using this approach, we find that Wnt and Notch signaling are coupled at the level of their oscillation dynamics. Furthermore, we provide functional evidence that the oscillation phase shift between Wnt and Notch signaling is critical for PSM segmentation. Our work hence reveals that dynamic signaling, i.e., the relative timing between oscillatory signals, encodes essential information during multicellular development
    corecore