91 research outputs found

    Beauty in the Eye of the Home-Owner: Aesthetic Zoning and Residential Property Values

    Get PDF
    This article empirically confirms one core motivation for architectural zoning: Shape homogeneity among neighboring homes increases the value of residential buildings. Drawing on large-scale shape and transaction data, this study first develops a data-driven measure of architectural similarity, condensing three-dimensional shapes to univariate shape distributions. These algorithm-based similarity estimates are good predictors of human perceptions of shape similarity and are linked to property attributes and transaction prices. For the city of Rotterdam, a price premium of approximately 3.5% is estimated for row houses within very homogeneous ensembles over buildings facing heterogeneous neighbors

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    First genotype-phenotype study in TBX4 syndrome : gain-of-function mutations causative for lung disease

    Get PDF
    Rationale: Despite the increased recognition of TBX4-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Methods: We assembled a multi-center cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with PAH patients with BMPR2 causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the NIHR BioResource - Rare Diseases (NBR). Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared to loss-of-function (p = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (p = 0.005) and increased incidence of interstitial lung disease (p = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (p = 0.022) although age had a significant effect in the hazard model (p = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (p < 0.001) and had worse baseline lung function (FEV1, FVC) (p = 0.009) compared to the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain-of-function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    A mechanistic model for electricity consumption on dairy farms: Definition, validation, and demonstration

    No full text
    Our objective was to define and demonstrate a mechanistic model that enables dairy farmers to explore the impact of a technical or managerial innovation on electricity consumption, associated CO2 emissions, and electricity costs. We, therefore, (1) defined a model for electricity consumption on dairy farms (MECD) capable of simulating total electricity consumption along with related CO2 emissions and electricity costs on dairy farms on a monthly basis; (2) validated the MECD using empirical data of 1 yr on commercial spring calving, grass-based dairy farms with 45, 88, and 195 milking cows; and (3) demonstrated the functionality of the model by applying 2 electricity tariffs to the electricity consumption data and examining the effect on total dairy farm electricity costs. The MECD was developed using a mechanistic modeling approach and required the key inputs of milk production, cow number, and details relating to the milk-cooling system, milking machine system, water-heating system, lighting systems, water pump systems, and the winter housing facilities as well as details relating to the management of the farm (e.g., season of calving). Model validation showed an overall relative prediction error (RPE) of less than 10% for total electricity consumption. More than 87% of the mean square prediction error of total electricity consumption was accounted for by random variation. The RPE values of the milk-cooling systems, water-heating systems, and milking machine systems were less than 20%. The RPE values for automatic scraper systems, lighting systems, and water pump systems varied from 18 to 113%, indicating a poor prediction for these metrics. However, automatic scrapers, lighting, and water pumps made up only 14% of total electricity consumption across all farms, reducing the overall impact of these poor predictions. Demonstration of the model showed that total farm electricity costs increased by between 29 and 38% by moving from a day and night tariff to a flat tariff

    Osteogenesis on surface selective laser sintered bioresorbable scaffolds

    No full text
    In this study we have used a novel surface selective laser sintering (SSLS) technique to develop CAD/CAM designed scaffolds for bone tissue engineering. SSLS polylactic acid scaffolds were evaluated in vitro and in vivo as templates for human fetal femur-derived cell and adult human bone marrow stromal cell osteogenesis. Both cell types were cultured successfully on SSLS scaffolds with an increase in expression of alkaline phosphatase activity. Cell in-growth and Alcian blue/Sirius red positive staining of matrix deposition were observed on SSLS scaffolds in vitro in basal medium and osteogenic culture conditions. Similar results were observed in vivo with type I collagen expressed by cells on the scaffolds. In the critical sized femur segmental defect, SSLS scaffolds seeded with the cells enhanced significantly bone tissue regeneratio
    corecore