41 research outputs found
Unitarity and Causality in Generalized Quantum Mechanics for Non-Chronal Spacetimes
Spacetime must be foliable by spacelike surfaces for the quantum mechanics of
matter fields to be formulated in terms of a unitarily evolving state vector
defined on spacelike surfaces. When a spacetime cannot be foliated by spacelike
surfaces, as in the case of spacetimes with closed timelike curves, a more
general formulation of quantum mechanics is required. In such generalizations
the transition matrix between alternatives in regions of spacetime where states
{\it can} be defined may be non-unitary. This paper describes a generalized
quantum mechanics whose probabilities consistently obey the rules of
probability theory even in the presence of such non-unitarity. The usual notion
of state on a spacelike surface is lost in this generalization and familiar
notions of causality are modified. There is no signaling outside the light
cone, no non-conservation of energy, no ``Everett phones'', and probabilities
of present events do not depend on particular alternatives of the future.
However, the generalization is acausal in the sense that the existence of
non-chronal regions of spacetime in the future can affect the probabilities of
alternatives today. The detectability of non-unitary evolution and violations
of causality in measurement situations are briefly considered. The evolution of
information in non-chronal spacetimes is described.Comment: 40pages, UCSBTH92-0
A Proof of the Generalized Second Law for Two-Dimensional Black Holes
We investigate the generalized second law for two-dimensional black holes in
equilibrium (Hartle-Hawking) and nonequilibrium (Unruh) with the heat bath
surrounding the black holes. We obtain a simple expression for the change of
total entropy in terms of covariant thermodynamic variables, which is valid not
only for the Hartle-Hawking state but also for the Unruh state up to leading
order, without assuming a quasi-stationary evolution of the black holes. Using
this expression, it is shown that the rate of local entropy production is
non-negative in the two-dimensional black hole systems.Comment: 15 pages, boundary condition of static black hole is added to clarify
the situation, abstract and section 4 (concluding remarks) is rewritten, and
minor corrections, references adde
Spacetime Information
In usual quantum theory, the information available about a quantum system is
defined in terms of the density matrix describing it on a spacelike surface.
This definition must be generalized for extensions of quantum theory which do
not have a notion of state on a spacelike surface. It must be generalized for
the generalized quantum theories appropriate when spacetime geometry fluctuates
quantum mechanically or when geometry is fixed but not foliable by spacelike
surfaces. This paper introduces a four-dimensional notion of the information
available about a quantum system's boundary conditions in the various sets of
decohering histories it may display. The idea of spacetime information is
applied in several contexts: When spacetime geometry is fixed the information
available through alternatives restricted to a spacetime region is defined. The
information available through histories of alternatives of general operators is
compared to that obtained from the more limited coarse- grainings of
sum-over-histories quantum mechanics. The definition of information is
considered in generalized quantum theories. We consider as specific examples
time-neutral quantum mechanics with initial and final conditions, quantum
theories with non-unitary evolution, and the generalized quantum frameworks
appropriate for quantum spacetime. In such theories complete information about
a quantum system is not necessarily available on any spacelike surface but must
be searched for throughout spacetime. The information loss commonly associated
with the ``evolution of pure states into mixed states'' in black hole
evaporation is thus not in conflict with the principles of generalized quantum
mechanics.Comment: 47pages, 2 figures, UCSBTH 94-0
Focusing and the Holographic Hypothesis
The ``screen mapping" introduced by Susskind to implement 't Hooft's
holographic hypothesis is studied. For a single screen time, there are an
infinite number of images of a black hole event horizon, almost all of which
have smaller area on the screen than the horizon area. This is consistent with
the focusing equation because of the existence of focal points. However, the
{\it boundary} of the past (or future) of the screen obeys the area theorem,
and so always gives an expanding map to the screen, as required by the
holographic hypothesis. These considerations are illustrated with several
axisymmetric static black hole spacetimes.Comment: 8 pages, plain latex, 5 figures included using psfi
The black hole final state
We propose that in quantum gravity one needs to impose a final state boundary
condition at black hole singularities. This resolves the apparent contradiction
between string theory and semiclassical arguments over whether black hole
evaporation is unitary.Comment: 17 pages, harvmac, 1 figure, v2: comment about interactions and
references adde
The quasiclassical realms of this quantum universe
The most striking observable feature of our indeterministic quantum universe
is the wide range of time, place, and scale on which the deterministic laws of
classical physics hold to an excellent approximation. This essay describes how
this domain of classical predictability of every day experience emerges from a
quantum theory of the universe's state and dynamics.Comment: 24 pages, revtex4, minor change
Shape Space Methods for Quantum Cosmological Triangleland
With toy modelling of conceptual aspects of quantum cosmology and the problem
of time in quantum gravity in mind, I study the classical and quantum dynamics
of the pure-shape (i.e. scale-free) triangle formed by 3 particles in 2-d. I do
so by importing techniques to the triangle model from the corresponding 4
particles in 1-d model, using the fact that both have 2-spheres for shape
spaces, though the latter has a trivial realization whilst the former has a
more involved Hopf (or Dragt) type realization. I furthermore interpret the
ensuing Dragt-type coordinates as shape quantities: a measure of
anisoscelesness, the ellipticity of the base and apex's moments of inertia, and
a quantity proportional to the area of the triangle. I promote these quantities
at the quantum level to operators whose expectation and spread are then useful
in understanding the quantum states of the system. Additionally, I tessellate
the 2-sphere by its physical interpretation as the shape space of triangles,
and then use this as a back-cloth from which to read off the interpretation of
dynamical trajectories, potentials and wavefunctions. I include applications to
timeless approaches to the problem of time and to the role of uniform states in
quantum cosmological modelling.Comment: A shorter version, as per the first stage in the refereeing process,
and containing some new reference
Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum?
We revisit the recently found equivalence for the response of a static scalar
source interacting with a {\em massless} Klein-Gordon field when the source is
(i) static in Schwarzschild spacetime, in the Unruh vacuum associated with the
Hawking radiation and (ii) uniformly accelerated in Minkowski spacetime, in the
inertial vacuum, provided that the source's proper acceleration is the same in
both cases. It is shown that this equivalence is broken when the massless
Klein-Gordon field is replaced by a {\em massive} one.Comment: 4 pages, 2 figure
Schwinger-Keldysh Propagators from AdS/CFT Correspondence
We demonstrate how to compute real-time Green's functions for a class of
finite temperature field theories from their AdS gravity duals. In particular,
we reproduce the two-by-two Schwinger-Keldysh matrix propagator from a gravity
calculation. Our methods should work also for computing higher point Lorentzian
signature correlators. We elucidate the boundary condition subtleties which
hampered previous efforts to build a Lorentzian-signature AdS/CFT
correspondence. For two-point correlators, our construction is automatically
equivalent to the previously formulated prescription for the retarded
propagator.Comment: 16 pages, 1 figure, references added; to appear in JHE
On the Particle Definition in the presence of Black Holes
A canonical particle definition via the diagonalisation of the Hamiltonian
for a quantum field theory in specific curved space-times is presented. Within
the provided approach radial ingoing or outgoing Minkowski particles do not
exist. An application of this formalism to the Rindler metric recovers the
well-known Unruh effect. For the situation of a black hole the Hamiltonian
splits up into two independent parts accounting for the interior and the
exterior domain, respectively. It turns out that a reasonable particle
definition may be accomplished for the outside region only. The Hamiltonian of
the field inside the black hole is unbounded from above and below and hence
possesses no ground state. The corresponding equation of motion displays a
linear global instability. Possible consequences of this instability are
discussed and its relations to the sonic analogues of black holes are
addressed. PACS-numbers: 04.70.Dy, 04.62.+v, 10.10.Ef, 03.65.Db.Comment: 44 pages, LaTeX, no figures, accepted for publication in Phys. Rev.