30 research outputs found
Strained interface layer contributions to the structural and electronic properties of epitaxial V2O3 films
We report on the transport properties of epitaxial vanadium sesquioxide (V2O3) thin films with thicknesses in the range of 1 to 120 nm. Films with thickness down to nanometer values reveal clear resistivity curves with temperature illustrating that even at these thicknesses the films are above the percolation threshold and continuous over large distances. The results reveal that with reducing thickness the resistivity of the films increases sharply for thicknesses below 4 nm and the metal-insulator transition (MIT) is quenched. We attribute this increase to a strained interface layer of thickness ∼ 4 nm with in-plane lattice parameters corresponding to the Al2O3 substrate. The interface layer displays a suppressed MIT shifted to higher temperatures and has a room temperature resistivity 6 orders of magnitude higher than the thicker V2O3 films.This work was supported by the University of Iceland
Research Fund for Doctoral Students, the University of Iceland
Research Fund, the Icelandic Student Innovation Fund, and the
Icelandic Research Fund (Grant Nos. 207111 and 174271)
Magnetic order and energy-scale hierarchy in artificial spin ice
In order to explain and predict the properties of many physical systems, it
is essential to understand the interplay of different energy-scales. Here we
present investigations of the magnetic order in thermalised artificial spin ice
structures, with different activation energies of the interacting Ising-like
elements. We image the thermally equilibrated magnetic states of the
nano-structures using synchrotron-based magnetic microscopy. By comparing
results obtained from structures with one or two different activation energies,
we demonstrate a clear impact on the resulting magnetic order. The differences
are obtained by the analysis of the magnetic spin structure factors, in which
the role of the activation energies is manifested by distinct short-range
order. This demonstrates that artificial spin systems can serve as model
systems, allowing the definition of energy-scales by geometrical design and
providing the backdrop for understanding their interplay.Comment: 8 pages, 5 figures (+ supplementary 6 pages, 4 figures
Influence of the magnetic field on the plasmonic properties of transparent Ni anti-dot arrays
Extraordinary optical transmission is observed due to the excitation of
surface plasmon polaritons (SPPs) in 2-Dimensional hexagonal anti-dot patterns
of pure Ni thin films, grown on sapphire substrates. A strong enhancement of
the polar Kerr rotation is recorded at the surface plasmon related transmission
maximum. Angular resolved reflectivity measurements under an applied field,
reveal an enhancement and a shift of the normalized reflectivity difference
upon reversal of the magnetic saturation (transverse magneto-optical Kerr
effect-TMOKE). The change of the TMOKE signal clearly shows the magnetic field
modulation of the dispersion relation of SPPs launched in a 2D patterned
ferromagnetic Ni film
Multiple energy scales in mesospin systems : the vertex-frustrated Saint George lattice
The interplay between topology and energy hierarchy plays a vital role in the collective magnetic order in artificial ferroic systems. Here we investigate, experimentally, the effect of having one or two activation energies of interacting Ising-like magnetic islands—mesospins—in thermalized, vertex-frustrated lattices. The thermally arrested magnetic states of the elements were determined using synchrotron-based magnetic microscopy after cooling the samples from temperatures above the Curie temperature of the material. Statistical analysis of the correlations between mesospins across several length scales reveals changes in the magnetic order, reflecting the amount of ground state plaquettes realized for a vertex-frustrated lattice. We show that the latter depends on the presence, or not, of different activation energies
Gold nanoisland substrates for SERS characterization of cultured cells.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadWe demonstrate a simple approach for fabricating cell-compatible SERS substrates, using repeated gold deposition and thermal annealing. The substrates exhibit SERS enhancement up to six orders of magnitude and high uniformity. We have carried out Raman imaging of fixed mesenchymal stromal cells cultured directly on the substrates. Results of viability assays confirm that the substrates are highly biocompatible and Raman imaging confirms that cell attachment to the substrates is sufficient to realize significant SERS enhancement of cellular components. Using the SERS substrates as an in vitro sensing platform allowed us to identify multiple characteristic molecular fingerprints of the cells, providing a promising avenue towards non-invasive chemical characterization of biological samples.Icelandic Centre for Research
Haskoli Islands
European Research Council (ERC
Використання кавітаційних пристроїв в харчовій промисловості
We present a direct experimental investigation of the thermal ordering in an artificial analogue of an asymmetric two-dimensional Ising system composed of a rectangular array of nano-fabricated magnetostatically interacting islands. During fabrication and below a critical thickness of the magnetic material the islands are thermally fluctuating and thus the system is able to explore its phase space. Above the critical thickness the islands freeze-in resulting in an arrested thermalized state for the array. Determining the magnetic state we demonstrate a genuine artificial two-dimensional Ising system which can be analyzed in the context of nearest neighbor interactions
The importance of the weak: Interaction modifiers in artificial spin ices
The modification of geometry and interactions in two-dimensional magnetic
nanosystems has enabled a range of studies addressing the magnetic order,
collective low-energy dynamics, and emergent magnetic properties, in e.g.
artificial spin ice structures. The common denominator of all these
investigations is the use of Ising-like mesospins as building blocks, in the
form of elongated magnetic islands. Here we introduce a new approach: single
interaction modifiers, using slave-mesospins in the form of discs, within which
the mesospin is free to rotate in the disc plane. We show that by placing these
on the vertices of square artificial spin ice arrays and varying their
diameter, it is possible to tailor the strength and the ratio of the
interaction energies. We demonstrate the existence of degenerate ice-rule
obeying states in square artificial spin ice structures, enabling the
exploration of thermal dynamics in a spin liquid manifold. Furthermore, we even
observe the emergence of flux lattices on larger length-scales, when the energy
landscape of the vertices is reversed. The work highlights the potential of a
design strategy for two-dimensional magnetic nano-architectures, through which
mixed dimensionality of mesospins can be used to promote thermally emergent
mesoscale magnetic states.Comment: 17 pages, including methods, 4 figures. Supplementary information
contains 16 pages and 15 figure
Melting artificial spin ice
Artificial spin ice arrays of micromagnetic islands are a means of
engineering additional energy scales and frustration into magnetic materials.
Despite much progress in elucidating the properties of such arrays, the `spins'
in the systems studied so far have no thermal dynamics as the kinetic
constraints are too high. Here we address this problem by using a material with
an ordering temperature near room temperature. By measuring the temperature
dependent magnetization in different principal directions, and comparing with
simulations of idealized statistical mechanical models, we confirm a dynamical
`pre-melting' of the artificial spin ice structure at a temperature well below
the intrinsic ordering temperature of the island material. We thus create a
spin ice array that has real thermal dynamics of the artificial spins over an
extended temperature range