3 research outputs found

    Probing few-particle Laughlin states of photons via correlation measurements

    Full text link
    We propose methods to create and observe Laughlin-like states of photons in a strongly nonlinear optical cavity. Such states of strongly interacting photons can be prepared by pumping the cavity with a Laguerre-Gauss beam, which has a well-defined orbital angular momentum per photon. The Laughlin-like states appear as sharp resonances in the particle-number-resolved transmission spectrum. Power spectrum and second-order correlation function measurements yield unambiguous signatures of these few-particle strongly-correlated states.Comment: 11 pages including appendice

    Photon condensation in circuit QED by engineered dissipation

    Full text link
    We study photon condensation phenomena in a driven and dissipative array of superconducting microwave resonators. Specifically, we show that by using an appropriately designed coupling of microwave photons to superconducting qubits, an effective dissipative mechanism can be engineered, which scatters photons towards low-momentum states while conserving their number. This mimics a tunable coupling of bosons to a low temperature bath, and leads to the formation of a stationary photon condensate in the presence of losses and under continuous-driving conditions. Here we propose a realistic experimental setup to observe this effect in two or multiple coupled cavities, and study the characteristics of such an out-of-equilibrium condensate, which arise from the competition between pumping and dissipation processes
    corecore