2,433 research outputs found

    Temporal meson correlators at finite temperature on quenched anisotropic lattice

    Get PDF
    We study charmonium correlators at finite temperature in quenched anisotropic lattice QCD. The smearing technique is applied to enhance the low energy part of the correlator. We use two analysis procedures: the maximum entropy method for extraction of the spectral function without assuming specific form, as an estimate of the shape of spectral function, and the χ2\chi^2 fit assuming typical forms as quantitative evaluation of the parameters associated to the forms. We find that at T0.9TcT\simeq 0.9T_c the ground state peak has almost the same mass as at T=0 and almost vanishing width. At T1.1TcT\simeq 1.1T_c, our result suggests that the correlator still has nontrivial peak structure at almost the same position as below TcT_c with finite width.Comment: Lattice 2002 Nonzero temperature 3page

    Equation of state in 2+1 flavor QCD with improved Wilson quarks by the fixed scale approach

    Get PDF
    We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the TT-integration method to nonperturbatively calculate the equation of state by the fixed-scale approach. With the fixed-scale approach, we can purely vary the temperature on a line of constant physics without changing the system size and renormalization constants. Unlike the conventional fixed-NtN_t approach, it is easy to keep scaling violations small at low temperature in the fixed scale approach. We study 2+1 flavor QCD at light quark mass corresponding to mπ/mρ0.63m_\pi/m_\rho \simeq 0.63, while the strange quark mass is chosen around the physical point. Although the light quark masses are heavier than the physical values yet, our equation of state is roughly consistent with recent results with highly improved staggered quarks at large NtN_t.Comment: 14 pages, 12 figures, v2: Table I and Figure 3 are corrected, reference updated. Main discussions and conclusions are unchanged, v3: version to appear in PRD, v4: reference adde

    Fixed scale approach to the equation of state on the lattice

    Full text link
    We propose a fixed scale approach to calculate the equation of state (EOS) in lattice QCD. In this approach, the temperature T is varied by Nt at fixed lattice spacings. This enables us to reduce T=0 simulations which are required to provide basic data in finite temperature studies but are quite expensive in the conventional fixed-Nt approach. Since the conventional integral method to obtain the pressure is inapplicable at fixed scale, we introduce a new method, "T-integration method", to calculate pressure non-perturbatively. We test the fixed scale approach armed with the T-integral method in quenched QCD on isotropic and anisotropic lattices. Our method is found to be powerful to obtain reliable results for the equation of state, especially at intermediate and low temperatures. Reduction of the computational cost of T=0 simulations is indispensable to study EOS in QCD with dynamical quarks. The status of our study in Nf=2+1 QCD with improved Wilson quarks is also reported.Comment: 4 pages, 4 figures - To appear in the conference proceedings for Quark Matter 2009, March 30 - April 4, Knoxville, Tennessee. Fonts in the figures magnifie

    GaAs-GaAlAs distributed-feedback diode lasers with separate optical and carrier confinement

    Get PDF
    Remarkable reduction of the threshold current density is achieved in GaAs-GaAlAs distributed-feedback diode lasers by adopting a separate-confinement heterostructure. The diodes are lased successfully at temperatures up to 340 °K under pulsed operation. The lowest threshold current density is 3 kA/cm^2 at 300 °K

    Histograms in heavy-quark QCD at finite temperature and density

    Full text link
    We study the phase structure of lattice QCD with heavy quarks at finite temperature and density by a histogram method. We determine the location of the critical point at which the first-order deconfining transition in the heavy-quark limit turns into a crossover at intermediate quark masses through a change of the shape of the histogram under variation of coupling parameters. We estimate the effect of the complex phase factor which causes the sign problem at finite density, and show that, in heavy-quark QCD, the effect is small around the critical point. We determine the critical surface in 2+1 flavor QCD in the heavy-quark region at all values of the chemical potential mu including mu=infty.Comment: 26 pages, 21 figures, 1 tabl
    corecore