4 research outputs found

    Yield and apparent dry matter and nitrogen balances for muskmelon in a long-term comparison between an organic and a conventional low input cropping system

    Get PDF
    Nine-year yields and apparent balances of dry matter and nitrogen (N) are reported for muskmelon cultivated in a long-term comparison trial between an organic and a conventional low input system in Central Italy. In every year, yield, above ground biomass and N accumulation of each cash crop, green manure and weeds, and the partitioning between marketable yield and crop residues were determined. Apparent dry matter and nitrogen balances were calculated at the end of each crop cycle by taking into account the amounts of dry matter and ex novo N supplied to the system as green manure legume Ndfa (i.e., an estimate of N derived from the atmosphere via symbiotic fixation) and fertilisers, and those removed with marketable yield. Differences between systems varied across years. On average, organic muskmelon yielded 16% less than the conventional one, while the fruit quality was similar in the two cropping systems. Fruit ripening began one week later and it was more scaled than in the crop grown conventionally. This was the consequence of a slow initial growth of the organic crop, due to inadequate green manure N total supply or timing of N release. Moreover such a wide spaced crop (0.5 plants m–2, in rows 2 m apart) was not efficient in intercepting N released from green manure biomass incorporated broadcast. Compared to the conventional crop management, the organic crop management resulted in much higher organic matter supply to the soil and in higher residual N after harvest. Thus, the choice of cultivating wheat just after melon to prevent postharvest residual N loss appears a key strategy especially in organic systems. Fall-winter green manure crops contributed to the self-sufficiency of the organic system by supplying muskmelon with either N absorbed from the soil or ex novo legume Ndfa

    Eleven-year results on soft and durum wheat crops grown in an organic and in a conventional low input cropping system

    Get PDF
    Eleven-year results on yields and apparent balances of organic matter and nitrogen (N) are reported for soft and durum wheat crops grown in the BIOSYST long-term experiment for the comparison between an organic and a conventional low-input system in Central Italy. The N supply to organic wheat consisted of 40 kg N ha–1 as poultry manure plus the supposed residual N left by green manures carried out before the preceding summer vegetable, while the N supply to conventional wheat consisted of 80 kg N ha–1 as mineral fertilisers, split in two applications of 40 kg ha–1 each, at tillering and pre-shooting. In every year, above ground biomass and N accumulation of each wheat species, including weeds, and the partitioning between grain yield and crop residues were determined. Apparent dry matter and N balances were calculated at the end of each crop cycle by taking into account the amounts of dry matter and N supplied to the system as fertilisers, and those removed with grain yield. Soft wheat yielded more than durum wheat. For both species, grain yield and protein content were more variable across years and generally lower in the organic than in the conventional system. In both systems, grain yield of both species resulted negatively correlated with fall-winter rainfall, likely for its effect on soil N availability. Both species caused a lower return of biomass and a higher soil N depletion in the organic than in the conventional system. Our experiment confirmed that winter wheat can help exploit the soil N availability and reduce N leaching in fall winter, especially after summer vegetables, but in stockless or stock-limited organic systems it needs to be included in rotations where soil fertility is restored by fall winter green manures to be carried out before summer crops

    Eleven-year results on soft and durum wheat crops grown in an organic and in a conventional low input cropping system

    Get PDF
    Eleven-year results on yields and apparent balances of organic matter and nitrogen (N) are reported for soft and durum wheat crops grown in the BIOSYST long-term experiment for the comparison between an organic and a conventional low-input system in Central Italy. The N supply to organic wheat consisted of 40 kg N ha–1 as poultry manure plus the supposed residual N left by green manures carried out before the preceding summer vegetable, while the N supply to conventional wheat consisted of 80 kg N ha–1 as mineral fertilisers, split in two applications of 40 kg ha–1 each, at tillering and pre-shooting. In every year, above ground biomass and N accumulation of each wheat species, including weeds, and the partitioning between grain yield and crop residues were determined. Apparent dry matter and N balances were calculated at the end of each crop cycle by taking into account the amounts of dry matter and N supplied to the system as fertilisers, and those removed with grain yield. Soft wheat yielded more than durum wheat. For both species, grain yield and protein content were more variable across years and generally lower in the organic than in the conventional system. In both systems, grain yield of both species resulted negatively correlated with fall-winter rainfall, likely for its effect on soil N availability. Both species caused a lower return of biomass and a higher soil N depletion in the organic than in the conventional system. Our experiment confirmed that winter wheat can help exploit the soil N availability and reduce N leaching in fall winter, especially after summer vegetables, but in stockless or stock-limited organic systems it needs to be included in rotations where soil fertility is restored by fall winter green manures to be carried out before summer crops

    Changes in the Fusarium head blight complex of malting barley in a three-year field experiment in Italy

    No full text
    In this study, conducted for three years on eleven malting barley varieties cultivated in central Italy, the incidence of different mycotoxigenic fungal genera, the identification of the Fusarium species associated with the Fusarium Head Blight (FHB) complex, and kernels contamination with deoxynivalenol (DON) and T-2 mycotoxins were determined. The influence of climatic conditions on Fusarium infections and FHB complex composition was also investigated. Fusarium species were always present in the three years and the high average and maximum temperatures during anthesis mainly favored their occurrence. The FHB complex was subject to changes during the three years and the main causal agents were F. poae, F. avenaceum, F. tricinctum and F. graminearum, which, even if constantly present, never represented the principal FHB agent. The relative incidence of Fusarium species changed because of climatic conditions occurring during the seasons. The FHB complex was composed of many different Fusarium species and some of them were associated with a specific variety and/or with specific weather parameters, indicating that the interaction between a certain plant genotype and climatic conditions may influence the presence of Fusarium spp. causing infections. With regard to mycotoxin contamination, T-2 toxin, in some cases, was found in kernels at levels that exceeded EU recommended values
    corecore