19 research outputs found
Recommended from our members
Soil monitoring instrumentation
The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described
Recommended from our members
New developments in radiation protection instrumentation via active electronic methods
New developments in electronics and radiation detectors are improving on real-time data acquisition of radiation exposure and contamination conditions. Recent developments in low power circuit designs, hybrid and integrated circuits, and microcomputers have all contributed to smaller and lighter radiation detection instruments that are, at the same time, more sensitive and provide more information (e.g., radioisotope identification) than previous devices. New developments in radiation detectors, such as cadmium telluride, gas scintillation proportional counters, and imaging counters (both charged particle and photon) promise higher sensitivities and expanded uses over present instruments. These developments are being applied in such areas as health physics, waste management, environmental monitoring, in vivo measurements, and nuclear safeguards
Recommended from our members
TRU waste-assay instrumentation and application in nuclear-facility decommissioning
The Los Alamos TRU waste assay program is developing measurement techniques for TRU and other radioactive waste materials generated by the nuclear industry, including decommissioning programs. Systems are now being fielded for test and evaluation purposes at DOE TRU waste generators. The transfer of this technology to other facilities and the commercial instrumentation sector is well in progress. 6 figures
Recommended from our members
Two new portable survey instruments: the field phoswich detector and the Wee Pee Pee
As part of a continuing program to upgrade the health physics survey instrumentation at Los Alamos, we have recently developed two new portable instruments. The first is a fully portable phoswich detector for low energy photons from small amounts of plutonium and americium in the field. The instrument has a background that is 2 to 3 times lower than an equivalent thin NaI detector. The instrument features an aural popper, analogue rate meter, and timer/scaler with liquid crystal display. The second instrument, called the ''Wee Pee Wee,'' is an alpha air proportional probe with complete electronics and readout package mounted on the probe itself. The entire package has a mass of 0.66 kg (1.45 lb) and is carried and operated in one hand. For monitoring shoes and other places where it is difficult to read the count-rate meter, the meter is made detachable for clipping to a shirt pocket, etc. An audio popper, range scales to 100 K cpm, and visual checks for high voltage and battery levels are also included
Recommended from our members
Detection of the stable isotopes of carbon using a 3-MV Van de Graaff and the application to environmental and biological studies
The proton radiative capture reactions, /sup 12/C(p, gamma )/sup 13/N and /sup 13 /C(p gamma ) /sup 14/N have been studied to determine their applicability for assaying materials for their /sup 13/C enrichment. This technique for determining carbon isotopic ratios compares favorably with the more classical analysis techniques for /sup 13/C tracer experiments. (auth