29 research outputs found

    Information thermodynamics for a multi-feedback process with time delay

    Full text link
    We investigate a measurement-feedback process of repeated operations with time delay. During a finite-time interval, measurement on the system is performed and the feedback protocol derived from the measurement outcome is applied with time delay. This protocol is maintained into the next interval until a new protocol from the next measurement is applied. Unlike a feedback process without delay, both memories associated with previous and present measurement outcomes are involved in the system dynamics, which naturally brings forth a joint system described by a system state and two memory states. The thermodynamic second law provides a lower bound for heat flow into a thermal reservoir by the (3-state) Shannon entropy change of the joint system. However, as the feedback protocol depends on memory states sequentially, we can deduce a tighter bound for heat flow by integrating out irrelevant memory states during dynamics. As a simple example, we consider the so-called cold damping feedback process where the velocity of a particle is measured and a dissipative feedback protocol is applied to decelerate the particle. We confirm that the heat flow is well above the tightest bound. We also examine the long-time limit of this feedback process, which turns out to exhibit an interesting instability transition as well as heating by controlling parameters such as measurement errors, time interval, protocol strength, and time delay length. We discuss the underlying mechanism for instability and heating, which might be unavoidable in reality.Comment: 5 pages, 4 figure

    Voter model on a directed network: Role of bidirectional opinion exchanges

    Full text link
    The voter model with the node update rule is numerically investigated on a directed network. We start from a directed hierarchical tree, and split and rewire each incoming arc at the probability pp. In order to discriminate the better and worse opinions, we break the Z2Z_2 symmetry (σ=±1\sigma = \pm 1) by giving a little more preference to the opinion σ=1\sigma = 1. It is found that as pp becomes larger, introducing more complicated pattern of information flow channels, and as the network size NN becomes larger, the system eventually evolves to the state in which more voters agree on the better opinion, even though the voter at the top of the hierarchy keeps the worse opinion. We also find that the pure hierarchical tree makes opinion agreement very fast, while the final absorbing state can easily be influenced by voters at the higher ranks. On the other hand, although the ordering occurs much slower, the existence of complicated pattern of bidirectional information flow allows the system to agree on the better opinion.Comment: 5 pages, 3 figures, Phys. Rev. E (in press

    Total cost of operating an information engine

    Full text link
    We study a two-level system controlled in a discrete feedback loop, modeling both the system and the controller in terms of stochastic Markov processes. We find that the extracted work, which is known to be bounded from above by the mutual information acquired during measurement, has to be compensated by an additional energy supply during the measurement process itself, which is bounded by the same mutual information from below. Our results confirm that the total cost of operating an information engine is in full agreement with the conventional second law of thermodynamics. We also consider the efficiency of the information engine as function of the cycle time and discuss the operating condition for maximal power generation. Moreover, we find that the entropy production of our information engine is maximal for maximal efficiency, in sharp contrast to conventional reversible heat engines.Comment: PDFLaTeX, 12 pages, 11 figure

    Rectification of spatial disorder

    Full text link
    We demonstrate that a large ensemble of noiseless globally coupled-pinned oscillators is capable of rectifying spatial disorder with spontaneous current activated through a dynamical phase transition mechanism, either of first or second order, depending on the profile of the pinning potential. In the presence of an external weak drive, the same collective mechanism can result in an absolute negative mobility, which, though not immediately related to symmetry breaking, is most prominent at the phase transition

    Coherence enhanced quantum-dot heat engine

    Full text link
    We show that quantum coherence can enhance the performance of a continuous quantum heat engine in the Lindblad description. We investigate the steady-state solutions of the particle-exchanging quantum heat engine, composed of degenerate double quantum dots coupled to two heat baths in parallel, where quantum coherence may be induced due to interference between relaxation channels. We find that the engine power can be enhanced by the coherence in the nonlinear response regime, when the symmetry of coupling configurations between dots and two baths is broken. In the symmetric case, the coherence cannot be maintained in the steady state, except for the maximum interference degenerate case, where initial-condition-dependent multiple steady states appear with a dark state
    corecore