9 research outputs found

    Catchment-scale patterns of geomorphic activity and vegetation distribution in an alpine glacier foreland (Kaunertal Valley, Austria)

    Get PDF
    The interaction between geomorphological and ecological processes plays a significant role in determining landscape patterns in glacier forelands. However, the spatial organization of this biogeomorphic mosaic remains unclear due to limited catchment-scale data. To address this gap, we used a multi-proxy analysis to map potential geomorphic activity related to surface changes induced by sediment transport on drift-mantled slopes and a glaciofluvial plain. High-resolution vegetation data were used to generate a catchment-scale map delineating vegetation cover and stability thresholds. The two maps were integrated, and an exploratory regression analysis was conducted to investigate the influence of geomorphic activity on vegetation colonization. The multi-proxy analysis resulted in an accurate mapping of catchment-wide geomorphic activity, with a validation accuracy ranging from 75.3% through field mapping to 85.9% through plot sampling. Through vegetation cover mapping, we identified biogeomorphic stability thresholds, revealing a mosaic of vegetation distribution. Distinct colonization patterns emerged across different geomorphic process groups, influenced by process magnitude and the time since the last disturbance event. The exploratory regression analysis showed that vegetation distribution is significantly affected by geomorphic processes. Based on the overlay of results regarding geomorphic activity and vegetation distribution, we suggest an age-independent framework that indicates four potential situations of biogeomorphic succession

    Metabolic analysis of the interaction between plants and herbivores

    Get PDF
    Insect herbivores by necessity have to deal with a large arsenal of plant defence metabolites. The levels of defence compounds may be increased by insect damage. These induced plant responses may also affect the metabolism and performance of successive insect herbivores. As the chemical nature of induced responses is largely unknown, global metabolomic analyses are a valuable tool to gain more insight into the metabolites possibly involved in such interactions. This study analyzed the interaction between feral cabbage (Brassica oleracea) and small cabbage white caterpillars (Pieris rapae) and how previous attacks to the plant affect the caterpillar metabolism. Because plants may be induced by shoot and root herbivory, we compared shoot and root induction by treating the plants on either plant part with jasmonic acid. Extracts of the plants and the caterpillars were chemically analysed using Ultra Performance Liquid Chromatography/Time of Flight Mass Spectrometry (UPLCT/MS). The study revealed that the levels of three structurally related coumaroylquinic acids were elevated in plants treated on the shoot. The levels of these compounds in plants and caterpillars were highly correlated: these compounds were defined as the ‘metabolic interface’. The role of these metabolites could only be discovered using simultaneous analysis of the plant and caterpillar metabolomes. We conclude that a metabolomics approach is useful in discovering unexpected bioactive compounds involved in ecological interactions between plants and their herbivores and higher trophic levels.

    Classifying Sparse Vegetation in a Proglacial Valley Using UAV Imagery and Random Forest Algorithm

    No full text
    Extreme hydro-meteorological events become an increasing risk in high mountain environments, resulting in erosion events that endanger human infrastructure and life. Vegetation is known to be an important stabilizing factor; however, little is known about the spatial patterns of species composition in glacial forelands. This investigation aims to differentiate sparse vegetation in a steep alpine environment in the Austrian part of the Central Eastern Alps using low-cost multispectral cameras on an unmanned aerial vehicle (UAV). Highly resolved imagery from a consumer-grade UAV proved an appropriate basis for the SfM-based modeling of the research area as well as for vegetation mapping. Consideration must be paid to changing light conditions during data acquisition, especially with multispectral sensors. Different approaches were tested, and the best results were obtained using the Random Forest (RF) algorithm with the target class discrimination based on the RGB orthomosaic and the DEM as supplementary dataset. Our work contributes to the field of biogeomorphic research in proglacial areas as well as to the field of small-scale remote sensing and vegetation measuring. Our findings show that the occurrence of vegetation patches differs in terms of density and diversity within this relatively recent deglaciated environment

    Classifying Sparse Vegetation in a Proglacial Valley Using UAV Imagery and Random Forest Algorithm

    No full text
    Extreme hydro-meteorological events become an increasing risk in high mountain environments, resulting in erosion events that endanger human infrastructure and life. Vegetation is known to be an important stabilizing factor; however, little is known about the spatial patterns of species composition in glacial forelands. This investigation aims to differentiate sparse vegetation in a steep alpine environment in the Austrian part of the Central Eastern Alps using low-cost multispectral cameras on an unmanned aerial vehicle (UAV). Highly resolved imagery from a consumer-grade UAV proved an appropriate basis for the SfM-based modeling of the research area as well as for vegetation mapping. Consideration must be paid to changing light conditions during data acquisition, especially with multispectral sensors. Different approaches were tested, and the best results were obtained using the Random Forest (RF) algorithm with the target class discrimination based on the RGB orthomosaic and the DEM as supplementary dataset. Our work contributes to the field of biogeomorphic research in proglacial areas as well as to the field of small-scale remote sensing and vegetation measuring. Our findings show that the occurrence of vegetation patches differs in terms of density and diversity within this relatively recent deglaciated environment
    corecore