29 research outputs found

    Time-Weighted Average SPME Analysis for in Planta Determination of CVOCs

    Get PDF
    The Potential of Phytoscreening for Plume Delineation at Contaminated Sites Has Promoted Interest in Innovative, Sensitive Contaminant Sampling Techniques. Solid-Phase Microextraction (SPME) Methods Have Been Developed, Offering Quick, Undemanding, Noninvasive Sampling Without the Use of Solvents. in This Study, Time-Weighted Average SPME (TWA-SPME) Sampling Was Evaluated for in Planta Quantification of Chlorinated Solvents. TWA-SPME Was Found to Have Increased Sensitivity over Headspace and Equilibrium SPME Sampling. using a Variety of Chlorinated Solvents and a Polydimethylsiloxane/carboxen (PDMS/CAR) SPME Fiber, Most Compounds Exhibited Near Linear or Linear Uptake over the Sampling Period. Smaller, Less Hydrophobic Compounds Exhibited More Nonlinearity Than Larger, More Hydrophobic Molecules. using a Specifically Designed in Planta Sampler, Field Sampling Was Conducted at a Site Contaminated with Chlorinated Solvents. Sampling with TWA-SPME Produced Instrument Responses Ranging from 5 to over 200 Times Higher Than Headspace Tree Core Sampling. This Work Demonstrates that TWA-SPME Can Be Used for in Planta Detection of a Broad Range of Chlorinated Solvents and Methods Can Likely Be Applied to Other Volatile and Semivolatile Organic Compounds. © 2012 American Chemical Society

    Phytotoxicity of Sodium Fluoride and Uptake of Fluoride in Willow Trees

    No full text
    <div><p>The willow tree <i>(Salix viminalis)</i> toxicity test and a cress seed germination test <i>(Lepidium sativum)</i> were used to determine uptake of F and phytotoxicity of NaF. Concentrations in hydroponic solutions were 0–1000 mg F/L and 0–400 mg F/L in the preliminary and definitive test. A third test was done with soils collected from a fluoride-contaminated site at Fredericia, Denmark. The EC<sub>10</sub>, EC<sub>20</sub> and EC<sub>50</sub>-values for inhibition of transpiration were determined to 38.0, 59.6 and 128.7 mg F/L, respectively. The toxicity test with soil showed strong inhibition for the sample with the highest fluoride concentration (405 mg free F per kg soil, 75 mg F per L soil solution). The seed germination and root elongation test with cress gave EC<sub>10</sub>, EC<sub>20</sub> and EC<sub>50</sub>-values of 61.4, 105.0 and 262.8 mg F/L, respectively. At low external concentrations, fluoride was taken up more slowly than water and at high external concentrations at the same velocity. This indicates that an efflux pump becomes overloaded at concentrations above 210 mg F/L. Uptake kinetics were simulated with a non-linear mathematical model, and the Michaelis-Menten parameters were determined to half-saturation constant K<sub>M</sub> near 2 g F/L and maximum enzymatic removal rate v<sub>max</sub> at 9 g/(kg d).</p></div

    Viable methanotrophic bacteria enriched from air and rain can oxidize methane at cloud-like conditions

    Full text link
    Atmospheric methane is degraded by both photooxidation and, in topsoils, by methanotrophic bacteria, but this may not totally account for the global sink of this greenhouse gas. Topsoils are a prominent source of airborne bacteria, which can degrade some organic atmospheric compounds at rates similar to photooxidation. Although airborne methanotrophs would have direct access to atmospheric methane, their presence and activity in the atmosphere has not been investigated so far. We enriched airborne met- hanotrophs from air and rainwater and showed that they oxidized methane at atmospheric concentration. The majority of seven OTUs, detected using pmo A gene clone libraries, were affiliated to the type II methanotrophic genera Methylocystis and Methylosi- nus . Furthermore, 16S rRNA gene clone libraries revealed the presence of OTUsaffiliated with the genera Hyphomicrobium and Variovorax , members of which can stimulate methane oxidation by yet uniden- tified mechanisms. Simulating cloud-like conditions revealed that although both low pH and the presence of common cloud-borne organics negatively affected methane oxidation,airborne methanotrophs were able to degrade atmospheric methane in most cases. We demonstrate here for the first time that viable methanotrophic bacteria are present in air and rain and thus expand our knowledge on the global distri- bution of methanotrophs to include the atmosphere. The fact that they can degrade methane to below atmospheric concentrations when inoculated into artificial cloud water leads to an important possible effect of these organisms: the atmosphere may not only function as a medium for microbial dissemina- tion, but also as a site of active microbial methane turnover

    Determining Chemical Activity of (Semi)volatile Compounds by Headspace Solid-Phase Microextraction

    No full text
    This research introduces a new analytical methodology for measuring chemical activity of nonpolar (semi)volatile organic compounds in different sample matrices using automated solid-phase microextraction (SPME). The chemical activity of an analyte is known to determine its equilibrium concentration in the SPME fiber coating. On this basis, SPME was utilized for the analytical determination of chemical activity, fugacity, and freely dissolved concentration using these steps: (1) a sample is brought into a vial, (2) the SPME fiber is introduced into the headspace and equilibrated with the sample, (3) the SPME fiber is injected into the GC for thermal desorption and analysis, and (4) the method is calibrated by SPME above partitioning standards in methanol. Model substances were BTEX, naphthalene, and alkanes, which were measured in a variety of sample types: liquid polydimethylsiloxane (PDMS), wood, soil, and nonaqueous phase liquid (NAPL). Variable sample types (i.e., matrices) had no influence on sampling kinetics because diffusion through the headspace was rate limiting for the overall sampling process. Sampling time was 30 min, and relative standard deviations were generally below 5% for homogeneous solutions and somewhat higher for soil and NAPL. This type of activity measurement is fast, reliable, almost solvent free, and applicable for mixed-media sampling
    corecore