535 research outputs found

    Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input

    Get PDF
    In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from the network's background activity. This leads to ongoing, mostly subthreshold membrane dynamics that depends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics. Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, I show that (i) mere noise inputs can drive the membrane potential into sustained, quasiperiodic oscillations (noise-driven oscillations), in the absence of a stimulus-derived, intraneural, or network pacemaker; (ii) adding hyperpolarizing to depolarizing synaptic input can increase neural activity (hyperpolarization-induced activity), in the absence of hyperpolarization-activated currents

    Do Tanzanian hospitals need healthcare ethics committees? Report on the 2014 Dartmouth/Penn Research Ethics Training and Program Development for Tanzania (DPRET) workshop

    Get PDF
    Ethical issues are common in the global community. The shortage of human and medical resources when working with vulnerable populations requires institutional support to address the challenges that often arise in the patient-provider relationship. The 2014 Dartmouth/Penn Research Ethics Training and Program Development for Tanzania (DPRET) workshop centred on discussions about research and clinical ethics issues unique to Tanzanian healthcare providers. This article discusses some of the ethical challenges that workshop participants reported in their day-to-day work life with patients and families, such as truth-telling, disagreements over treatment plans and patient distrust of local physicians and hospital staff, among others. The Tanzanian participants recognised the need for supportive mechanisms within their local hospital environments. Further dialogue and research on the development of institutional ethics committees within hospital systems is critically needed so that healthcare providers can meet their ethical and professional obligations to patients and families and address ethical conflicts that arise in a timely and productive fashion

    Factors Associated with Treatment Outcome Satisfaction Six Months after Upper Blepharoplasty:A Large Cohort Study

    Get PDF
    Background: Upper blepharoplasty is the most popular facial cosmetic surgery. Although there are a variety of reasons to undergo this procedure, all patients expect an optimal cosmetic result. However, little is known about the factors that influence satisfaction with treatment outcome. Objectives: We assessed to what extent patient characteristics, clinician-rated and postsurgical outcome measures, and patient-reported satisfaction with facial appearance and quality-of-life are associated with patient-reported satisfaction with treatment outcome after a primary upper blepharoplasty. Methods: This study was performed in 583 patients with an upper blepharoplasty between 2016 and 2021. The primary outcome was satisfaction with treatment outcome 6 months postoperatively using the FACE-Q. Determinants were baseline patient characteristics (demographics), preoperative and postoperative clinician-rated and surgical outcome measures, and preoperative and postoperative FACE-Q appearance and quality-of-life scales. Hierarchical linear regression analysis was used to determine how much of the variance in satisfaction with outcome could be explained by these groups of determinants. Results: A total of 63% of the variance could be explained by the five groups of determinants of which 8% was explained by the baseline patient characteristics and clinician-rated and patient-reported outcomes together, another 8% by the postoperative clinician-rated outcomes, and the remaining 47% by the postoperative patient-reported outcomes. Conclusions: Patient characteristics, clinician-rated outcome measures, and baseline FACE-Q appearance and quality-of-life scores were of limited value in explaining satisfaction with treatment outcome. However, the postoperative FACE-Q appearance scale and the decision to undergo a blepharoplasty were strongly associated with satisfaction with treatment outcome.</p

    Resummation of Nonalternating Divergent Perturbative Expansions

    Get PDF
    A method for the resummation of nonalternating divergent perturbation series is described. The procedure constitutes a generalization of the Borel-Pad\'{e} method. Of crucial importance is a special integration contour in the complex plane. Nonperturbative imaginary contributions can be inferred from the purely real perturbative coefficients. A connection is drawn from the quantum field theoretic problem of resummation to divergent perturbative expansions in other areas of physics.Comment: 5 pages, LaTeX, 2 tables, 1 figure; discussion of the Carleman criterion added; version to appear in Phys. Rev.

    Search for dark photons as candidates for Dark Matter with FUNK

    Get PDF
    An additional U(1) symmetry predicted in theories beyond the Standard Model of particle physics can give rise to hidden (dark) photons. Depending on the mass and density of these hidden photons, they could account for a large fraction of the Dark Matter observed in the Universe. When passing through an interface of materials with different dielectric properties, hidden photons are expected to produce a tiny flux of photons. The wavelength of these photons is directly related to the mass of the hidden photons. In this contribution we report on measurements covering the visible and near-UV spectrum, corresponding to a dark photon mass in the eV range. The data were taken with the FUNK experiment using a spherical mirror of ~14m2 total area built up of 36 aluminum segments

    Gamma-ray blazars: the view from AGILE

    Full text link
    During the first 3 years of operation the Gamma-Ray Imaging Detector onboard the AGILE satellite detected several blazars in a high gamma-ray activity: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421, PKS 0537-441 and 4C +21.35. Thanks to the rapid dissemination of our alerts, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, and ARGO as well as radio-to-optical coverage by means of the GASP Project of the WEBT and the REM Telescope. This large multifrequency coverage gave us the opportunity to study the variability correlations between the emission at different frequencies and to obtain simultaneous spectral energy distributions of these sources from radio to gamma-ray energy bands, investigating the different mechanisms responsible for their emission and uncovering in some cases a more complex behaviour with respect to the standard models. We present a review of the most interesting AGILE results on these gamma-ray blazars and their multifrequency data.Comment: 25 pages, 10 figures, accepted for publication on Advances in Space Research. Talk presented at the 38th COSPAR Scientific Assembly (Bremen, Germany; July 18-25, 2010

    The KASCADE-Grande Experiment and the LOPES Project

    Full text link
    KASCADE-Grande is the extension of the multi-detector setup KASCADE to cover a primary cosmic ray energy range from 100 TeV to 1 EeV. The enlarged EAS experiment provides comprehensive observations of cosmic rays in the energy region around the knee. Grande is an array of 700 x 700 sqm equipped with 37 plastic scintillator stations sensitive to measure energy deposits and arrival times of air shower particles. LOPES is a small radio antenna array to operate in conjunction with KASCADE-Grande in order to calibrate the radio emission from cosmic ray air showers. Status and capabilities of the KASCADE-Grande experiment and the LOPES project are presented.Comment: To appear in Nuclear Physics B, Proceedings Supplements, as part of the volume for the CRIS 2004, Cosmic Ray International Seminar: GZK and Surrounding

    Resummation of the Divergent Perturbation Series for a Hydrogen Atom in an Electric Field

    Get PDF
    We consider the resummation of the perturbation series describing the energy displacement of a hydrogenic bound state in an electric field (known as the Stark effect or the LoSurdo-Stark effect), which constitutes a divergent formal power series in the electric field strength. The perturbation series exhibits a rich singularity structure in the Borel plane. Resummation methods are presented which appear to lead to consistent results even in problematic cases where isolated singularities or branch cuts are present on the positive and negative real axis in the Borel plane. Two resummation prescriptions are compared: (i) a variant of the Borel-Pade resummation method, with an additional improvement due to utilization of the leading renormalon poles (for a comprehensive discussion of renormalons see [M. Beneke, Phys. Rep. vol. 317, p. 1 (1999)]), and (ii) a contour-improved combination of the Borel method with an analytic continuation by conformal mapping, and Pade approximations in the conformal variable. The singularity structure in the case of the LoSurdo-Stark effect in the complex Borel plane is shown to be similar to (divergent) perturbative expansions in quantum chromodynamics.Comment: 14 pages, RevTeX, 3 tables, 1 figure; numerical accuracy of results enhanced; one section and one appendix added and some minor changes and additions; to appear in phys. rev.

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter Îł\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table
    • …
    corecore