1,393 research outputs found

    1-octadecene monolayers on Si(111) hydrogen-terminated surfaces: effects of substrate doping

    Full text link
    We have studied the electronic properties, in relation to their structural properties, of monolayers of 1-octadecene attached on a hydrogen-terminated (111) silicon surface. The molecules are attached using the free-radical reaction between C=C and Si-H activated by an ultraviolet illumination. We have compared the structural and electrical properties of monolayers formed on silicon substrate of different types (n-type and p-type) and different doping concentrations from low-doped (~1E14 cm-3) to highly doped (~1E19 cm-3) silicon substrates. We show that the monolayers on n-, p- and p+ silicon are densely packed and that they act as very good insulating films at a nanometer thickness with leakage currents as low as ~1E-7 A.cm-2 and high quality capacitance-voltage characteristics. The monolayers formed on n+-type silicon are more disordered and therefore exhibit larger leakage current densities (>1E-4 A.cm-2) when embedded in a silicon/monolayer/metal junction. The inferior structural and electronic properties obtained with n+-type silicon pinpoint the important role of surface potential and of the position of the surface Fermi level during the chemisorption of the organic monolayers.Comment: 33 pages, 8 figures, to be published J. Appl. Phy

    Nondestructive Inspection and Evaluation of Metal Matrix Composites

    Full text link
    A review is presented of work performed in our laboratory on the nondestructive inspection of metal matrix composites. In order to obtain damage representative of that which occurs in service, the specimens were mechanically loaded to intermediate load levels below that which causes final, catastrophic failure. Various nondestructive techniques were used both during and after the applied loadings to follow damage initiation and progress.</p

    Psychological principles of successful aging technologies: A mini-review

    Get PDF
    Based on resource-oriented conceptions of successful life-span development, we propose three principles for evaluating assistive technology: (a) net resource release; (b) person specificity, and (c) proximal versus distal frames of evaluation. We discuss how these general principles can aid the design and evaluation of assistive technology in adulthood and old age, and propose two technological strategies, one targeting sensorimotor and the other cognitive functioning. The sensorimotor strategy aims at releasing cognitive resources such as attention and working memory by reducing the cognitive demands of sensory or sensorimotor aspects of performance. The cognitive strategy attempts to provide adaptive and individualized cuing structures orienting the individual in time and space by providing prompts that connect properties of the environment to the individual's action goals. We argue that intelligent assistive technology continuously adjusts the balance between `environmental support' and `self-initiated processing' in person-specific and aging-sensitive ways, leading to enhanced allocation of cognitive resources. Furthermore, intelligent assistive technology may foster the generation of formerly latent cognitive resources by activating developmental reserves (plasticity). We conclude that `lifespan technology', if co-constructed by behavioral scientists, engineers, and aging individuals, offers great promise for improving both the transition from middle adulthood to old age and the degree of autonomy in old age in present and future generations. Copyright (C) 2008 S. Karger AG, Basel

    Conductance statistics from a large array of sub-10 nm molecular junctions

    Full text link
    Devices made of few molecules constitute the miniaturization limit that both inorganic and organic-based electronics aspire to reach. However, integration of millions of molecular junctions with less than 100 molecules each has been a long technological challenge requiring well controlled nanometric electrodes. Here we report molecular junctions fabricated on a large array of sub-10 nm single crystal Au nanodots electrodes, a new approach that allows us to measure the conductance of up to a million of junctions in a single conducting Atomic Force Microscope (C-AFM) image. We observe two peaks of conductance for alkylthiol molecules. Tunneling decay constant (beta) for alkanethiols, is in the same range as previous studies. Energy position of molecular orbitals, obtained by transient voltage spectroscopy, varies from peak to peak, in correlation with conductance values.Comment: ACS Nano (in press

    An objective comparison of cell-tracking algorithms

    Get PDF
    We present a combined report on the results of three editions of the Cell Tracking Challenge, an ongoing initiative aimed at promoting the development and objective evaluation of cell segmentation and tracking algorithms. With 21 participating algorithms and a data repository consisting of 13 data sets from various microscopy modalities, the challenge displays today's state-of-the-art methodology in the field. We analyzed the challenge results using performance measures for segmentation and tracking that rank all participating methods. We also analyzed the performance of all of the algorithms in terms of biological measures and practical usability. Although some methods scored high in all technical aspects, none obtained fully correct solutions. We found that methods that either take prior information into account using learning strategies or analyze cells in a global spatiotemporal video context performed better than other methods under the segmentation and tracking scenarios included in the challenge

    "Give me some space" : exploring youth to parent aggression and violence

    Get PDF
    A small scale qualitative project, undertaken by an interdisciplinary domestic violence research group involving academic researchers and research assistants, with colleagues from Independent Domestic Abuse Services (IDAS), investigated youth aggression and violence against parents. Following the literature review, data was generated through several research conversations with young people (n = 2), through semi-structured interviews with mothers (n = 3) and practitioners (n = 5), and through a practitioner focus group (n = 8). Thematic analysis and triangulation of the data from parents, practitioners and young people, elicited interconnected and complex overarching themes. Young people could be both victim and perpetrator. The witnessing or experiencing of domestic aggression and violence raised the concept of ‘bystander children’. The impact of young people experiencing familial violence was underestimated by parents. For practitioners, the effects of working with domestic violence was shown to be significant - both positively and negatively

    High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems

    Get PDF
    A new azobenzene-thiophene molecular switch is designed, synthesized and used to form self-assembled monolayers (SAM) on gold. An "on/off" conductance ratio up to 7x1E3 (with an average value of 1.5x1E3) is reported. The "on" conductance state is clearly identified to the cis isomer of the azobenzene moiety. The high "on/off" ratio is explained in terms of photo-induced, configuration-related, changes in the electrode-molecule interface energetics (changes in the energy position of the molecular orbitals with respect to the Fermi energy of electrodes) in addition to changes in the tunnel barrier length (length of the molecules). First principles DFT calculations demonstrate a better delocalization of the frontier orbitals, as well as a stronger electronic coupling between the azobenzene moiety and the electrode for the cis configuration over the trans one. Measured photoionization cross-sections for the molecules in the SAM are close to the known values for azobenzene derivatives in solution.Comment: 1 file with main text, figure and suppementary informatio

    Improving the dielectric properties of ethylene-glycol alkanethiol self-assembled monolayers.

    Get PDF
    Self-assembled monolayers (SAMs) can be formed at the interface between solids and fluids, and are often used to modify the surface properties of the solid. One of the most widely employed SAM systems is exploiting thiol-gold chemistry, which, together with alkane-chain-based molecules, provides a reliable way of SAM formation to modify the surface properties of electrodes. Oligo ethylene-glycol (OEG) terminated alkanethiol monolayers have shown excellent antifouling properties and have been used extensively for the coating of biosensor electrodes to minimize nonspecific binding. Here, we report the investigation of the dielectric properties of COOH-capped OEG monolayers and demonstrate a strategy to improve the dielectric properties significantly by mixing the OEG SAM with small concentrations of 11-mercaptoundecanol (MUD). The monolayer properties and composition were characterized by means of impedance spectroscopy, water contact angle, ellipsometry and X-ray photoelectron spectroscopy. An equivalent circuit model is proposed to interpret the EIS data and to determine the conductivity of the monolayer. We find that for increasing MUD concentrations up to about 5% the resistivity of the SAM steadily increases, which together with a considerable decrease of the phase of the impedance, demonstrates significantly improved dielectric properties of the monolayer. Such monolayers will find widespread use in applications which depend critically on good dielectric properties such as capacitive biosensor

    Self-reported sleep relates to hippocampal atrophy across the adult lifespan: results from the Lifebrain consortium.

    Get PDF
    OBJECTIVES: Poor sleep is associated with multiple age-related neurodegenerative and neuropsychiatric conditions. The hippocampus plays a special role in sleep and sleep-dependent cognition, and accelerated hippocampal atrophy is typically seen with higher age. Hence, it is critical to establish how the relationship between sleep and hippocampal volume loss unfolds across the adult lifespan. METHODS: Self-reported sleep measures and MRI-derived hippocampal volumes were obtained from 3105 cognitively normal participants (18-90 years) from major European brain studies in the Lifebrain consortium. Hippocampal volume change was estimated from 5116 MRIs from 1299 participants for whom longitudinal MRIs were available, followed up to 11 years with a mean interval of 3.3 years. Cross-sectional analyses were repeated in a sample of 21,390 participants from the UK Biobank. RESULTS: No cross-sectional sleep-hippocampal volume relationships were found. However, worse sleep quality, efficiency, problems, and daytime tiredness were related to greater hippocampal volume loss over time, with high scorers showing 0.22% greater annual loss than low scorers. The relationship between sleep and hippocampal atrophy did not vary across age. Simulations showed that the observed longitudinal effects were too small to be detected as age-interactions in the cross-sectional analyses. CONCLUSIONS: Worse self-reported sleep is associated with higher rates of hippocampal volume decline across the adult lifespan. This suggests that sleep is relevant to understand individual differences in hippocampal atrophy, but limited effect sizes call for cautious interpretation
    corecore