59 research outputs found
Recommended from our members
The possible role of chromosome X variability in hypertensive familiarity
Familiarity participates in the pathogenesis of hypertension, although only recently, whole genome studies have proposed regions of the human genome possibly involved in the transmission of the hypertensive phenotype. Although studies have mainly focused on autosome, hitherto the influence of sex on familial transmission of hypertension has not been considered. We analysed the database of the Campania Salute Network of Hypertension center of the Federico II University Hospital of Naples (Italy), using dichotomous variables for paternal and maternal familiarity and gender (male and female) of 12 504 hypertensive patients (6868 males and 5636 females) and 6352 controls (3484 males and 2868 females), totaling 18 856 subjects. In the hypertensive group, familiarity was present in 75% of cases with odds of 3.77 and in only 26% of the normotensives with odds of 0.94. The odds ratio (OR) indicated that familiarity increases the risk of developing hypertension by 2.91 (95% confidence interval (CI)=2.67–3.17, P<0.001) times. Additionally, maternal familiarity was 37% (OR=3.01, 95% CI=2.66–3.41, P<0.001), paternal familiarity was 21% (OR=2.31, 95% CI=2.01–2.68, P<0.001) and the double familiarity was 17% (OR=3.45, 95% CI=2.87–4.01, P<0.001), thus suggesting a plausible association between maternal familiarity and development of hypertension; this finding was observed both in male and in female patients, although the phenomenon was larger in males. Given the dominance of maternal transmission in males, by genome-wide analysis of the X chromosome, we found two regions that were differently distributed in male hypertensives with maternal hypertension. Our data highlight the importance of genetic variants in the X chromosome to the maternal transmission of the hypertensive phenotype
The possible role of chromosome X variability in hypertensive familiarity
Familiarity participates in the pathogenesis of hypertension, although only recently, whole genome studies have proposed regions of the human genome possibly involved in the transmission of the hypertensive phenotype. Although studies have mainly focused on autosome, hitherto the influence of sex on familial transmission of hypertension has not been considered. We analysed the database of the Campania Salute Network of Hypertension center of the Federico II University Hospital of Naples (Italy), using dichotomous variables for paternal and maternal familiarity and gender (male and female) of 12 504 hypertensive patients (6868 males and 5636 females) and 6352 controls (3484 males and 2868 females), totaling 18 856 subjects. In the hypertensive group, familiarity was present in 75% of cases with odds of 3.77 and in only 26% of the normotensives with odds of 0.94. The odds ratio (OR) indicated that familiarity increases the risk of developing hypertension by 2.91 (95% confidence interval (CI)=2.67–3.17, P<0.001) times. Additionally, maternal familiarity was 37% (OR=3.01, 95% CI=2.66–3.41, P<0.001), paternal familiarity was 21% (OR=2.31, 95% CI=2.01–2.68, P<0.001) and the double familiarity was 17% (OR=3.45, 95% CI=2.87–4.01, P<0.001), thus suggesting a plausible association between maternal familiarity and development of hypertension; this finding was observed both in male and in female patients, although the phenomenon was larger in males. Given the dominance of maternal transmission in males, by genome-wide analysis of the X chromosome, we found two regions that were differently distributed in male hypertensives with maternal hypertension. Our data highlight the importance of genetic variants in the X chromosome to the maternal transmission of the hypertensive phenotype
The Recently Identified P2Y-Like Receptor GPR17 Is a Sensor of Brain Damage and a New Target for Brain Repair
Deciphering the mechanisms regulating the generation of new neurons and new oligodendrocytes, the myelinating cells of the central nervous system, is of paramount importance to address new strategies to replace endogenous damaged cells in the adult brain and foster repair in neurodegenerative diseases. Upon brain injury, the extracellular concentrations of nucleotides and cysteinyl-leukotrienes (cysLTs), two families of endogenous signaling molecules, are markedly increased at the site of damage, suggesting that they may act as “danger signals” to alert responses to tissue damage and start repair. Here we show that, in brain telencephalon, GPR17, a recently deorphanized receptor for both uracil nucleotides and cysLTs (e.g., UDP-glucose and LTD4), is normally present on neurons and on a subset of parenchymal quiescent oligodendrocyte precursor cells. We also show that induction of brain injury using an established focal ischemia model in the rodent induces profound spatiotemporal-dependent changes of GPR17. In the lesioned area, we observed an early and transient up-regulation of GPR17 in neurons expressing the cellular stress marker heat shock protein 70. Magnetic Resonance Imaging in living mice showed that the in vivo pharmacological or biotechnological knock down of GPR17 markedly prevents brain infarct evolution, suggesting GPR17 as a mediator of neuronal death at this early ischemic stage. At later times after ischemia, GPR17 immuno-labeling appeared on microglia/macrophages infiltrating the lesioned area to indicate that GPR17 may also acts as a player in the remodeling of brain circuitries by microglia. At this later stage, parenchymal GPR17+ oligodendrocyte progenitors started proliferating in the peri-injured area, suggesting initiation of remyelination. To confirm a specific role for GPR17 in oligodendrocyte differentiation, the in vitro exposure of cortical pre-oligodendrocytes to the GPR17 endogenous ligands UDP-glucose and LTD4 promoted the expression of myelin basic protein, confirming progression toward mature oligodendrocytes. Thus, GPR17 may act as a “sensor” that is activated upon brain injury on several embryonically distinct cell types, and may play a key role in both inducing neuronal death inside the ischemic core and in orchestrating the local remodeling/repair response. Specifically, we suggest GPR17 as a novel target for therapeutic manipulation to foster repair of demyelinating wounds, the types of lesions that also occur in patients with multiple sclerosis
- …