1,319 research outputs found
Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER)
GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) is a large underground
observatory for proton decay search, neutrino astrophysics and CP-violation
studies in the lepton sector. Possible underground sites are studied within the
FP7 LAGUNA project (Europe) and along the JPARC neutrino beam in collaboration
with KEK (Japan). The concept is scalable to very large masses.Comment: 4 pages, 1 figure, Contribution to the Workshop "European Strategy
for Future Neutrino Physics", CERN, Oct. 200
Определение эффективности нейтронного детектора из пластического сцинтиллятора o100?200 мм
Рассчитывается и экспериментально проверяется эффективность детектора. к нейтронам сверхвысоких (десятки и сотни МэВ) энергий
Dental wear at macro- and microscopic scale in rabbits fed diets of different abrasiveness: A pilot investigation
To differentiate the effects of internal and external abrasives on tooth wear, we performed a controlled feeding experiment in rabbits fed diets of varying phytolith content as an internal abrasive and with addition of sand as an external abrasive. 13 rabbits were each fed one of the following four pelleted diets with different abrasive characteristics (no phytoliths: lucerne L; phytoliths: grass G; more phytoliths: grass and rice hulls GR; phytoliths plus external abrasives: grass, rice hulls and sand GRS) for two weeks. At the end the feeding period, three tooth wear proxies were applied to quantify wear on the cheek teeth at macroscopic and microscopic wear scales: CT scans were obtained to quantify tooth height. Mesowear was scored adapted to this species, and 3D dental microwear texture analysis (DMTA) was performed on four antagonistic teeth. Both external and internal abrasives resulted in increased wear in all proxies compared to the phytolith and sand-free diet (L). The wear effect was more prominent on the maxillary than on the mandibular teeth. On the GRS diet, the upper third premolar had the largest decline in relative tooth height compared to others in the same tooth row. The impact of diet abrasiveness on the mesowear signal was only clearly visible for the most abrasive diet, most likely due to the limited sample size. DMTA was especially sensitive to phytolith changes in the diet, and surface roughness generally increased with increasing amounts of abrasive agents (L < G < GR < GRS) as expressed in an increase of most height and volume parameters. The fast pace of dental wear in this species led to some expected correlations between tooth height, mesowear and DMTA parameters, creating a distinct wear pattern for each diet. Animal models with high wear rates may be particularly suitable for investigations on functional interrelationships of different wear proxies
Hidden Silicon-Vacancy Centers in Diamond
We characterize a high-density sample of negatively charged silicon-vacancy
(SiV) centers in diamond using collinear optical multidimensional coherent
spectroscopy. By comparing the results of complementary signal detection
schemes, we identify a hidden population of \ce{SiV^-} centers that is not
typically observed in photoluminescence, and which exhibits significant
spectral inhomogeneity and extended electronic times. The phenomenon is
likely caused by strain, indicating a potential mechanism for controlling
electric coherence in color-center-based quantum devices
Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene
For most optoelectronic applications of graphene a thorough understanding of
the processes that govern energy relaxation of photoexcited carriers is
essential. The ultrafast energy relaxation in graphene occurs through two
competing pathways: carrier-carrier scattering -- creating an elevated carrier
temperature -- and optical phonon emission. At present, it is not clear what
determines the dominating relaxation pathway. Here we reach a unifying picture
of the ultrafast energy relaxation by investigating the terahertz
photoconductivity, while varying the Fermi energy, photon energy, and fluence
over a wide range. We find that sufficiently low fluence ( 4
J/cm) in conjunction with sufficiently high Fermi energy (
0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier
scattering, which leads to efficient carrier heating. Upon increasing the
fluence or decreasing the Fermi energy, the carrier heating efficiency
decreases, presumably due to energy relaxation that becomes increasingly
dominated by phonon emission. Carrier heating through carrier-carrier
scattering accounts for the negative photoconductivity for doped graphene
observed at terahertz frequencies. We present a simple model that reproduces
the data for a wide range of Fermi levels and excitation energies, and allows
us to qualitatively assess how the branching ratio between the two distinct
relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201
Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film
Environmental molecular beam experiments are used to examine water
interactions with liquid methanol films at temperatures from 170 K to 190 K. We
find that water molecules with 0.32 eV incident kinetic energy are efficiently
trapped by the liquid methanol. The scattering process is characterized by an
efficient loss of energy to surface modes with a minor component of the
incident beam that is inelastically scattered. Thermal desorption of water
molecules has a well characterized Arrhenius form with an activation energy of
0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3)
s^(-1). We also observe a temperature dependent incorporation of incident water
into the methanol layer. The implication for fundamental studies and
environmental applications is that even an alcohol as simple as methanol can
exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure
The ArDM experiment
The aim of the ArDM project is the development and operation of a one ton
double-phase liquid argon detector for direct Dark Matter searches. The
detector measures both the scintillation light and the ionization charge from
ionizing radiation using two independent readout systems. This paper briefly
describes the detector concept and presents preliminary results from the ArDM
R&D program, including a 3 l prototype developed to test the charge readout
system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta
Physica Polonica
Models of wave-function collapse, underlying theories, and experimental tests
We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process
First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches
ArDM-1t is the prototype for a next generation WIMP detector measuring both
the scintillation light and the ionization charge from nuclear recoils in a
1-ton liquid argon target. The goal is to reach a minimum recoil energy of
30\,keVr to detect recoiling nuclei. In this paper we describe the experimental
concept and present results on the light detection system, tested for the first
time in ArDM on the surface at CERN. With a preliminary and incomplete set of
PMTs, the light yield at zero electric field is found to be between 0.3-0.5
phe/keVee depending on the position within the detector volume, confirming our
expectations based on smaller detector setups.Comment: 14 pages, 10 figures, v2 accepted for publication in JINS
The nature of localization in graphene under quantum Hall conditions
Particle localization is an essential ingredient in quantum Hall physics
[1,2]. In conventional high mobility two-dimensional electron systems Coulomb
interactions were shown to compete with disorder and to play a central role in
particle localization [3]. Here we address the nature of localization in
graphene where the carrier mobility, quantifying the disorder, is two to four
orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density
of states and the localized state spectrum of a graphene flake in the quantum
Hall regime with a scanning single electron transistor [11]. Our microscopic
approach provides direct insight into the nature of localization. Surprisingly,
despite strong disorder, our findings indicate that localization in graphene is
not dominated by single particle physics, but rather by a competition between
the underlying disorder potential and the repulsive Coulomb interaction
responsible for screening.Comment: 18 pages, including 5 figure
- …