54 research outputs found
Electronic properties of palladium diselenide by density functional theory
The knowledge of the structural and electronic properties of a material is important in various applications such as optoelectronics and thermoelectric devices. In this study, we are using full potential linearized augmented plane wave method framed within density functional theory provided by WIEN2k to optimize the structure of PdSe2 in orthorhombic (Pbca) phase and calculate its electronic properties. With the implementation of local density approximation (LDA), Perdew-Burke-Ernzerhof parameterization of generalized gradient approximation (PBE-GGA), Wu-Cohen parameterization of GGA (WC-GGA), and PBE correction for solid GGA (PBEsol-GGA), the computed results of lattice constants are found to be within 5% error with the experiment data. Also, our calculated indirect band gap energy was found to be ~0.24 eV by LDA along with modified Becke-Johnson potential functional (mBJ) with experimental lattice constants and ~0.52 eV by using PBE-GGA with optimized lattice constants. However, the effect of spin-orbit coupling is not found too much on the band gap energy. By analyzing the partial density of states, we identify that d-orbital of Pd is demonstrating a slightly more significant contribution to both the valence and conduction band near to Fermi level which is also in agreement with the previous first principles study
Preparation and characterization of layer-diffusion processed InBi2Se4 thin films for photovoltaics application
In this research work, optoelectronic properties of Indium bismuth selenide (InBi2Se4) thin films are studied for their potentials for photovoltaic applications. The InBi2Se4 films are prepared via a thermal co-evaporation technique on glass substrate using Bi2S3 powders and indium granules. The as-deposited films are then annealed at different temperatures to convert into InBi2Se4 thin films. Results show that the obtained InBi2Se4 films possess excellent optoelectronic properties as an optimum bandgap of 1.2 eV was obtained for the film annealed at 350oC. Based on characterisation results of current and voltage realiationships, both as-deposited and annealed InBi2Se4 thin films show a linear relationship between current and annealing temperature. It was also noted that with increasing grain-size of the film, the current is also increased at a fixed applied voltage
Structural, electronic, and magnetic properties of Co-doped ZnO
Density functional theory based calculations have been carried out to study structural, electronic, and magnetic properties of Zn 1-xCo xO (x = 0, 0.25, 0.50, 0.75) in the zinc-blende phase, and the generalized gradient approximation proposed by Wu and Cohen has been used. Our calculated lattice constants decrease while the bulk moduli increase with the increase of Co 2+ concentration. The calculated spin polarized band structures show the metallic behavior of Co-doped ZnO for both the up and the down spin cases with various doping concentrations. Moreover, the electron population is found to shift from the Zn - O bond to the Co - O bond with the increase of Co 2+ concentration. The total magnetic moment, the interstitial magnetic moment, the valence and the conduction band edge spin splitting energies, and the exchange constants decrease, while the local magnetic moments of Zn, Co, O, the exchange spin splitting energies, and crystal field splitting energies increase with the increase of dopant concentration
A comprehensive DFT study of zinc oxide in different phases
A density functional study for structural and electronic properties of Zinc Oxide (ZnO), in wurtzite, rock salt and zinc-blende phases has been performed using full potential-linearized augmented plane wave/linearized augmented plane wave plus local ideal orbital (FP-LAPW/L(APW+lo) approach as realized in WIEN2k code. To approximate exchange correlation energy and corresponding potential, a special GGA parameterized by Wu–Cohen has been implemented. Our results of lattice constants, bulk moduli as well as for internal parameter with GGA-WC are found to be more reliable. This study reveals that value of internal parameter decreases with increasing volume whereas computed electronic band structure confirms the direct band gap behavior of ZnO in B4 and B3 phases while indirect band gap behavior in B1 phase. Moreover, two fold degeneracy at the maxima of valence band for B4 and B1 phases whereas three fold for B3 is observed. A detailed comparison with experimental and other first principles studies is also made
A study of Cr doping on the structural and electronic properties of ZnO: a first principles study
The central theme of nanotechnology to miniaturize devices has stimulated interest in diluted magnetic semiconductors (DMS). DMS that simultaneously exhibit magnetic and semiconducting behavior are capable of parting properties of two different function devices into one. In this research we present our first principles investigations related to the structural and electronic properties of, Cr doped zinc-blende (ZB) ZnO, DMS. These calculations are carried out using full potential linearized augmented plane wave plus local orbital (FP-L(APW+lo)) with generalized gradient approximations approach as implemented in WIEN2k code. In this study, the effect of Cr doping on lattice parameters, spin polarized electronic band structure, density of states (DOS) of ZnO is presented and analyzed in detail
Tailoring ferromagnetism in chromium-doped zinc oxide
The simultaneous manipulation of both charge and spin has made diluted magnetic semiconductors (DMS) a potential material for the fabrication of spintronic devices. We report DMSs based on ZnO doped with Cr in wurtzite (WZ) and zinc-blend (ZB) geometries. The injection of Cr impurities at a concentration of 6.25% has successfully tuned ferromagnetism in ZnO. To recognize the nature of magnetic interactions, two spatial configurations are investigated, where the impurity atoms are placed at minimum and maximum separation distances. The material favors the short-range magnetic coupling and has a tendency towards Cr clustering. The injection of a Cr impurity into ZnO strongly influences the electronic properties in terms of band structure, dependent on the impurity spatial distribution. It is half metallic for both structural geometries when impurity atoms have minimum separation and is metallic when they are placed far apart. Moreover, replacing Zn with Cr does not show a significant effect on the structural geometries. Our results endorse that Cr:ZnO can be efficiently used for spin-polarized transport and other spin-dependent applications in both hexagonal and cubic phases
Advances in CZTS thin films and nanostructured
Already published data for the optical band gap (Eg) of thin films and nanostructured copper zinc tin sulphide (CZTS) have been reviewed and combined. The vacuum (physical) and non-vacuum (chemical) processes are focused in the study for band gap comparison. The results are accumulated for thin films and nanostructured in different tables. It is inferred from the review that the nanostructured material has plenty of worth by engineering the band gap for capturing the maximum photons from solar spectru
Energy bandgap engineering of ZnO using impurity elements for solar cell applications: a DFT study
As a transparent conducting oxide, Cd:ZnO system is considered potential candidate for optoelectronic applications alternate to Al:ZnO. However instability issue of the Cd:ZnO system is under debate. Here we investigate effect of Cd impurities on physical properties of ZnO in wurtzite (WZ) as well as zincblende (ZB) geometries. Density functional theory (DFT) based full potential linearized augmented plane wave plus local orbital FP-L(APW+lo) method has been adapted for these investigations. To calculate the total energy of the system, exchange correlation energy term is evaluated at the level of GGA. For the more realistic band gap calculation, GGA in addition to mBJ exchange potential has been employed. From our calculations, it is observed, Cd:ZnO is more stable in ZB structure than that of WZ. The Cd substitution ZnO has a tendency to convert the hexagonal geometry into cubic. It is also observed, doping of the Cd impurities strongly influence the electronic structures resulting into the narrowing energy band gap
- …