1,589 research outputs found
Crystallization, flow and thermal histories of lunar and terrestrial compositions
Contents: a kinetic treatment of glass formation; effects of nucleating heterogeneities on glass formation; glass formation under continuous cooling conditions; crystallization statistics; kinetics of crystal nucleation; diffusion controlled crystal growth; crystallization of lunar compositions; crystallization between solidus and liquidus; crystallization on reheating a glass; temperature distributions during crystallization; crystallization of anorthite and anorthite-albite compositions; effect of oxidation state on viscosity; diffusive creep and viscous flow; high temperature flow behavior of glass-forming liquids, a free volume interpretation; viscous flow behavior of lunar compositions; thermal history of orange soil material; breccias formation by viscous sintering; viscous sintering; thermal histories of breccias; solute partitioning and thermal history of lunar rocks; heat flow in impact melts; and thermal histories of olivines
Connections and Metrics Respecting Standard Purification
Standard purification interlaces Hermitian and Riemannian metrics on the
space of density operators with metrics and connections on the purifying
Hilbert-Schmidt space. We discuss connections and metrics which are well
adopted to purification, and present a selected set of relations between them.
A connection, as well as a metric on state space, can be obtained from a metric
on the purification space. We include a condition, with which this
correspondence becomes one-to-one. Our methods are borrowed from elementary
*-representation and fibre space theory. We lift, as an example, solutions of a
von Neumann equation, write down holonomy invariants for cyclic ones, and ``add
noise'' to a curve of pure states.Comment: Latex, 27 page
Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint
In this paper it was proved that the quantum relative entropy can be asymptotically attained by Kullback Leibler divergences of
probabilities given by a certain sequence of POVMs. The sequence of POVMs
depends on , but is independent of the choice of .Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment
for Quantum Relative Entropy
Inverse Diffusion Theory of Photoacoustics
This paper analyzes the reconstruction of diffusion and absorption parameters
in an elliptic equation from knowledge of internal data. In the application of
photo-acoustics, the internal data are the amount of thermal energy deposited
by high frequency radiation propagating inside a domain of interest. These data
are obtained by solving an inverse wave equation, which is well-studied in the
literature. We show that knowledge of two internal data based on well-chosen
boundary conditions uniquely determines two constitutive parameters in
diffusion and Schroedinger equations. Stability of the reconstruction is
guaranteed under additional geometric constraints of strict convexity. No
geometric constraints are necessary when internal data for well-chosen
boundary conditions are available, where is spatial dimension. The set of
well-chosen boundary conditions is characterized in terms of appropriate
complex geometrical optics (CGO) solutions.Comment: 24 page
Analogue of cosmological particle creation in an ion trap
We study phonons in a dynamical chain of ions confined by a trap with a
time-dependent (axial) potential strength and demonstrate that they behave in
the same way as quantum fields in an expanding/contracting universe. Based on
this analogy, we present a scheme for the detection of the analogue of
cosmological particle creation which should be feasible with present-day
technology. In order to test the quantum nature of the particle creation
mechanism and to distinguish it from classical effects such as heating, we
propose to measure the two-phonon amplitude via the red side-band
and to compare it with the one-phonon amplitude ( red side-band).
PACS: 04.62.+v, 98.80.-k, 42.50.Vk, 32.80.Pj.Comment: 4 pages, 2 figure
Global-fidelity limits of state-dependent cloning of mixed states
By relevant modifications, the known global-fidelity limits of
state-dependent cloning are extended to mixed quantum states. We assume that
the ancilla contains some a priori information about the input state. As it is
shown, the obtained results contribute to the stronger no-cloning theorem. An
attainability of presented limits is discussed.Comment: 8 pages, ReVTeX, 1 figure. In revised form an attainability of
presented limits is discussed. Detected errors are corrected. Elucidative
figure is added. Minor grammatical changes are made. More explanation
Continuity and Stability of Partial Entropic Sums
Extensions of Fannes' inequality with partial sums of the Tsallis entropy are
obtained for both the classical and quantum cases. The definition of kth
partial sum under the prescribed order of terms is given. Basic properties of
introduced entropic measures and some applications are discussed. The derived
estimates provide a complete characterization of the continuity and stability
properties in the refined scale. The results are also reformulated in terms of
Uhlmann's partial fidelities.Comment: 9 pages, no figures. Some explanatory and technical improvements are
made. The bibliography is extended. Detected errors and typos are correcte
The Generalized Second Law implies a Quantum Singularity Theorem
The generalized second law can be used to prove a singularity theorem, by
generalizing the notion of a trapped surface to quantum situations. Like
Penrose's original singularity theorem, it implies that spacetime is null
geodesically incomplete inside black holes, and to the past of spatially
infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead,
the generalized second law requires that there only be a finite amount of
entropy producing processes in the past, unless there is a reversal of the
arrow of time. In asymptotically flat spacetime, the generalized second law
also rules out traversable wormholes, negative masses, and other forms of
faster-than-light travel between asymptotic regions, as well as closed timelike
curves. Furthermore it is impossible to form baby universes which eventually
become independent of the mother universe, or to restart inflation. Since the
semiclassical approximation is used only in regions with low curvature, it is
argued that the results may hold in full quantum gravity. An introductory
section describes the second law and its time-reverse, in ordinary and
generalized thermodynamics, using either the fine-grained or the coarse-grained
entropy. (The fine-grained version is used in all results except those relating
to the arrow of time.) A proof of the coarse-grained ordinary second law is
given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised
(4.1, 5.2), more comments on AdS. v3: major revisions including change of
title. v4: similar to published version, but with corrections to plan of
paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of
Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new
footnote
Time-resolved density correlations as probe of squeezing in toroidal Bose-Einstein condensates
I study the evolution of mean field and linear quantum fluctuations in a
toroidal Bose-Einstein condensate, whose interaction strength is quenched from
a finite (repulsive) value to zero. The azimuthal equal-time density-density
correlation function is calculated and shows temporal oscillations with twice
the (final) excitation frequencies after the transition. These oscillations are
a direct consequence of positive and negative frequency mixing during
non-adiabatic evolution. I will argue that a time-resolved measurement of the
equal-time density correlator might be used to calculate the moduli of the
Bogoliubov coefficients and thus the amount of squeezing imposed on a mode,
i.e., the number of atoms excited out of the condensate.Comment: 18 pages, IOP styl
Emergent Horizons in the Laboratory
The concept of a horizon known from general relativity describes the loss of
causal connection and can be applied to non-gravitational scenarios such as
out-of-equilibrium condensed-matter systems in the laboratory. This analogy
facilitates the identification and theoretical study (e.g., regarding the
trans-Planckian problem) and possibly the experimental verification of "exotic"
effects known from gravity and cosmology, such as Hawking radiation.
Furthermore, it yields a unified description and better understanding of
non-equilibrium phenomena in condensed matter systems and their universal
features. By means of several examples including general fluid flows, expanding
Bose-Einstein condensates, and dynamical quantum phase transitions, the
concepts of event, particle, and apparent horizons will be discussed together
with the resulting quantum effects.Comment: 7 pages, 4 figure
- …