1,589 research outputs found

    Crystallization, flow and thermal histories of lunar and terrestrial compositions

    Get PDF
    Contents: a kinetic treatment of glass formation; effects of nucleating heterogeneities on glass formation; glass formation under continuous cooling conditions; crystallization statistics; kinetics of crystal nucleation; diffusion controlled crystal growth; crystallization of lunar compositions; crystallization between solidus and liquidus; crystallization on reheating a glass; temperature distributions during crystallization; crystallization of anorthite and anorthite-albite compositions; effect of oxidation state on viscosity; diffusive creep and viscous flow; high temperature flow behavior of glass-forming liquids, a free volume interpretation; viscous flow behavior of lunar compositions; thermal history of orange soil material; breccias formation by viscous sintering; viscous sintering; thermal histories of breccias; solute partitioning and thermal history of lunar rocks; heat flow in impact melts; and thermal histories of olivines

    Connections and Metrics Respecting Standard Purification

    Full text link
    Standard purification interlaces Hermitian and Riemannian metrics on the space of density operators with metrics and connections on the purifying Hilbert-Schmidt space. We discuss connections and metrics which are well adopted to purification, and present a selected set of relations between them. A connection, as well as a metric on state space, can be obtained from a metric on the purification space. We include a condition, with which this correspondence becomes one-to-one. Our methods are borrowed from elementary *-representation and fibre space theory. We lift, as an example, solutions of a von Neumann equation, write down holonomy invariants for cyclic ones, and ``add noise'' to a curve of pure states.Comment: Latex, 27 page

    Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint

    Full text link
    In this paper it was proved that the quantum relative entropy D(σρ)D(\sigma \| \rho) can be asymptotically attained by Kullback Leibler divergences of probabilities given by a certain sequence of POVMs. The sequence of POVMs depends on ρ\rho, but is independent of the choice of σ\sigma.Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment for Quantum Relative Entropy

    Inverse Diffusion Theory of Photoacoustics

    Full text link
    This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photo-acoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well-studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schroedinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n2n internal data for well-chosen boundary conditions are available, where nn is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics (CGO) solutions.Comment: 24 page

    Analogue of cosmological particle creation in an ion trap

    Full text link
    We study phonons in a dynamical chain of ions confined by a trap with a time-dependent (axial) potential strength and demonstrate that they behave in the same way as quantum fields in an expanding/contracting universe. Based on this analogy, we present a scheme for the detection of the analogue of cosmological particle creation which should be feasible with present-day technology. In order to test the quantum nature of the particle creation mechanism and to distinguish it from classical effects such as heating, we propose to measure the two-phonon amplitude via the 2nd2^{\rm nd} red side-band and to compare it with the one-phonon amplitude (1st1^{\rm st} red side-band). PACS: 04.62.+v, 98.80.-k, 42.50.Vk, 32.80.Pj.Comment: 4 pages, 2 figure

    Global-fidelity limits of state-dependent cloning of mixed states

    Full text link
    By relevant modifications, the known global-fidelity limits of state-dependent cloning are extended to mixed quantum states. We assume that the ancilla contains some a priori information about the input state. As it is shown, the obtained results contribute to the stronger no-cloning theorem. An attainability of presented limits is discussed.Comment: 8 pages, ReVTeX, 1 figure. In revised form an attainability of presented limits is discussed. Detected errors are corrected. Elucidative figure is added. Minor grammatical changes are made. More explanation

    Continuity and Stability of Partial Entropic Sums

    Full text link
    Extensions of Fannes' inequality with partial sums of the Tsallis entropy are obtained for both the classical and quantum cases. The definition of kth partial sum under the prescribed order of terms is given. Basic properties of introduced entropic measures and some applications are discussed. The derived estimates provide a complete characterization of the continuity and stability properties in the refined scale. The results are also reformulated in terms of Uhlmann's partial fidelities.Comment: 9 pages, no figures. Some explanatory and technical improvements are made. The bibliography is extended. Detected errors and typos are correcte

    The Generalized Second Law implies a Quantum Singularity Theorem

    Full text link
    The generalized second law can be used to prove a singularity theorem, by generalizing the notion of a trapped surface to quantum situations. Like Penrose's original singularity theorem, it implies that spacetime is null geodesically incomplete inside black holes, and to the past of spatially infinite Friedmann--Robertson--Walker cosmologies. If space is finite instead, the generalized second law requires that there only be a finite amount of entropy producing processes in the past, unless there is a reversal of the arrow of time. In asymptotically flat spacetime, the generalized second law also rules out traversable wormholes, negative masses, and other forms of faster-than-light travel between asymptotic regions, as well as closed timelike curves. Furthermore it is impossible to form baby universes which eventually become independent of the mother universe, or to restart inflation. Since the semiclassical approximation is used only in regions with low curvature, it is argued that the results may hold in full quantum gravity. An introductory section describes the second law and its time-reverse, in ordinary and generalized thermodynamics, using either the fine-grained or the coarse-grained entropy. (The fine-grained version is used in all results except those relating to the arrow of time.) A proof of the coarse-grained ordinary second law is given.Comment: 46 pages, 8 figures. v2: discussion of global hyperbolicity revised (4.1, 5.2), more comments on AdS. v3: major revisions including change of title. v4: similar to published version, but with corrections to plan of paper (1) and definition of global hyperbolicity (3.2). v5: fixed proof of Thm. 1, changed wording of Thm. 3 & proof of Thm. 4, revised Sec. 5.2, new footnote

    Time-resolved density correlations as probe of squeezing in toroidal Bose-Einstein condensates

    Full text link
    I study the evolution of mean field and linear quantum fluctuations in a toroidal Bose-Einstein condensate, whose interaction strength is quenched from a finite (repulsive) value to zero. The azimuthal equal-time density-density correlation function is calculated and shows temporal oscillations with twice the (final) excitation frequencies after the transition. These oscillations are a direct consequence of positive and negative frequency mixing during non-adiabatic evolution. I will argue that a time-resolved measurement of the equal-time density correlator might be used to calculate the moduli of the Bogoliubov coefficients and thus the amount of squeezing imposed on a mode, i.e., the number of atoms excited out of the condensate.Comment: 18 pages, IOP styl

    Emergent Horizons in the Laboratory

    Full text link
    The concept of a horizon known from general relativity describes the loss of causal connection and can be applied to non-gravitational scenarios such as out-of-equilibrium condensed-matter systems in the laboratory. This analogy facilitates the identification and theoretical study (e.g., regarding the trans-Planckian problem) and possibly the experimental verification of "exotic" effects known from gravity and cosmology, such as Hawking radiation. Furthermore, it yields a unified description and better understanding of non-equilibrium phenomena in condensed matter systems and their universal features. By means of several examples including general fluid flows, expanding Bose-Einstein condensates, and dynamical quantum phase transitions, the concepts of event, particle, and apparent horizons will be discussed together with the resulting quantum effects.Comment: 7 pages, 4 figure
    corecore